ISDN2014_0167: Early onset binocular pattern deprivation differentiates developmental gene and protein expression changes between central and peripheral visual field representation in cat area 17

2015 ◽  
Vol 47 (Part_A) ◽  
pp. 50-50
Author(s):  
K. Laskowska‐Macios ◽  
T.‐T. Hu ◽  
M. Kossut ◽  
K. Burnat ◽  
L. Arckens
1984 ◽  
Vol 52 (3) ◽  
pp. 514-537 ◽  
Author(s):  
R. E. Kalil ◽  
P. D. Spear ◽  
A. Langsetmo

Recordings were made from striate cortex in five groups of cats that had been raised with strabismus produced by sectioning the extraocular muscles. These groups included animals reared with exotropia, unilateral or bilateral esotropia, and esotropia combined with lid suture of the unoperated eye. In addition, a group of esotropes was studied in which the unoperated eye was removed a few hours prior to recording. For comparison, five normal adult cats were also studied. In each of the above groups, cells were sampled in the representations of the central and peripheral visual fields in area 17 ipsilateral and contralateral to the deviated eye. We mapped the receptive field of each responsive cell, determined its ocularity, and tested it for selectivity. Confirming previous work, we found a marked loss of cortical binocularity in cats raised with strabismus. On average only 7% of the neurons that we recorded could be driven by both eyes. This percentage was relatively constant at all cortical locations that were studied and was not influenced by whether cats had been reared with exotropia, unilateral esotropia, or bilateral esotropia. The percentage of selective cells driven by the deviated eye in exotropes or esotropes did not appear to be different from normal at most cortical locations (but see 5, below). In addition, we did not observe any bias in the axial preference of selective cells in strabismic cats when compared with normal adult cats. In both exotropes and esotropes the deviated eye drove fewer cells when compared with the proportion that are driven by one eye in normal cats. In exotropes this deficit did not vary at different cortical representations of the visual field. In esotropes, however, this deficit was graded, being least in the representation of the peripheral visual field in area 17 contralateral to the deviated eye, intermediate in the representations of the central visual field in the contralateral and ipsilateral hemispheres, and greatest in the representation of the peripheral visual field in ipsilateral area 17. Furthermore, only when recording from the peripheral field representation in the ipsilateral hemisphere did we encounter significant numbers of cells driven by the deviated eye that lacked normal selectivity. Since it is possible that deprivation of the converged eye during development might account for the deficits noted above, we attempted to evaluate this factor using several independent lines of evidence. First, we could find no correlation between the angle of esotropia and the ability of the deviated eye to drive ipsilateral cortical cells representing the peripheral visual field.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 225 (6) ◽  
pp. 1839-1853 ◽  
Author(s):  
Jan W. Kurzawski ◽  
Kyriaki Mikellidou ◽  
Maria Concetta Morrone ◽  
Franco Pestilli

Abstract The human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parieto-occipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). To this end, we developed and utilized an automated pipeline comprising a series of Apps that run openly on the cloud computing platform brainlife.io to analyse 139 subjects of the Human Connectome Project (HCP). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata located anteriorly, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation located posteriorly. We then analyse an additional cohort of 10 HCP subjects using a manual plane extraction method outside brainlife.io to study the relationship between the two extracted white matter subcomponents and eccentricity, myelin and cortical thickness gradients within prostriata. Our results are consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans and reveal for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.


2007 ◽  
Vol 118 (6) ◽  
pp. 1303-1314 ◽  
Author(s):  
Linda Stenbacka ◽  
Simo Vanni

2020 ◽  
Author(s):  
Jan W. Kurzawski ◽  
Kyriaki Mikellidou ◽  
Maria Concetta Morrone ◽  
Franco Pestilli

AbstractThe human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parietooccipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white-matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation. This is consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans. Our results demonstrate for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.


1992 ◽  
Vol 325 (2) ◽  
pp. 291-300 ◽  
Author(s):  
T. R. Vidyasagar ◽  
J. Wye-Dvorak ◽  
G. H. Henry ◽  
R. F. Mark

2018 ◽  
Vol 18 (7) ◽  
pp. 1025-1031
Author(s):  
Cheng Luo ◽  
Di Wu ◽  
Meiling Chen ◽  
Wenhua Miao ◽  
Changfeng Xue ◽  
...  

Background: Different saponins from herbs have been used as tonic or functional foods, and for treatment of various diseases including cancers. Although clinical data has supported the function of these saponins, their underlying molecular mechanisms have not been well defined. Methods: With the simulated hypoxia created by 8 hours of Cu++ exposure and following 24 hour incubation with different concentration of saponins in HepG2 cells for MTT assay, migration and invasion assays, and for RT-PCR, and with each group of cells for immunofluorescence observation by confocal microscopy. Results: ZC-4 had the highest rate of inhibition of cell proliferation by MTT assay, and the highest inhibition of migration rate by in vitro scratch assay, while ZC-3 had the highest inhibition of invasion ratio by transwell assay. Under the same simulated hypoxia, the molecular mechanism of saponin function was conducted by measuring the gene expression of Hypoxia Inducible Factor (HIF)-1α through RT-PCR, in which ZC-3 showed a potent inhibition of gene HIF-1α. For the protein expression by immunofluorescence staining with confocal microscopy, HIF-1α was also inhibited by saponins, with the most potent one being ZC-4 after eight hours’ relatively hypoxia incubation. Conclusion: Saponins ZC-4 and ZC-3 have the potential to reduce HepG2 cell proliferation, migration and invasion caused by hypoxia through effectively inhibiting the gene and protein expression of HIF-1α directly and as antioxidant indirectly


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 906
Author(s):  
Agnieszka Mikłosz ◽  
Bartłomiej Łukaszuk ◽  
Adrian Chabowski ◽  
Jan Górski

Endothelial lipase (EL) is an enzyme capable of HDL phospholipids hydrolysis. Its action leads to a reduction in the serum high-density lipoprotein concentration, and thus, it exerts a pro-atherogenic effect. This study examines the impact of a single bout exercise on the gene and protein expression of the EL in skeletal muscles composed of different fiber types (the soleus—mainly type I, the red gastrocnemius—mostly IIA, and the white gastrocnemius—predominantly IIX fibers), as well as the diaphragm, and the heart. Wistar rats were subjected to a treadmill run: 1) t = 30 [min], V = 18 [m/min]; 2) t = 30 [min], V = 28 [m/min]; 3) t = 120 [min], V = 18 [m/min] (designated: M30, F30, and M120, respectively). We established EL expression in the total muscle homogenates in sedentary animals. Resting values could be ordered with the decreasing EL protein expression as follows: endothelium of left ventricle > diaphragm > red gastrocnemius > right ventricle > soleus > white gastrocnemius. Furthermore, we observed that even a single bout of exercise was capable of inducing changes in the mRNA and protein level of EL, with a clearer pattern observed for the former. After 30 min of running at either exercise intensity, the expression of EL transcript in all the cardiovascular components of muscles tested, except the soleus, was reduced in comparison to the respective sedentary control. The protein content of EL varied with the intensity and/or duration of the run in the studied whole tissue homogenates. The observed differences between EL expression in vascular beds of muscles may indicate the muscle-specific role of the lipase.


Sign in / Sign up

Export Citation Format

Share Document