Dehydrogenation of perhydro-N-ethylcarbazole under reduced total pressure

Author(s):  
Stephan Kiermaier ◽  
Daniel Lehmann ◽  
Andreas Bösmann ◽  
Peter Wasserscheid
Keyword(s):  
Author(s):  
Yu. A. Ezrokhi ◽  
E. A. Khoreva

The paper considers techniques to develop a mathematical model using a method of «parallel compressors». The model is intended to estimate the impact of the air inlet distortion on the primary parameters of the aero-engine.  The paper presents rated estimation results in the context of twin spool turbofan design for two typical cruiser modes of flight of the supersonic passenger jet. In estimation the base values σbase and the average values of the inlet ram recovery σave remained invariable. Thus, parametrical calculations were performed for each chosen relative value of the area of low-pressure region.The paper shows that an impact degree of the inlet distortion on the engine thrust for two modes under consideration is essentially different. In other words, if in the subsonic mode the impact assessment can be confined only to taking into account the influence of decreasing average values of the inlet total pressure, the use of such an assumption in the supersonic cruiser mode may result in considerable errors.With invariable values of the pressure recovery factor at the engine intake, which correspond to the speed of flight for a typical air inlet of external compression σbase, and average value σave, a parameter Δσuneven  has the main effect on the engine thrust, and degree of this effect essentially depends on a difference between σave and σbase values.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 576-579
Author(s):  
J. C. Williams III

1991 ◽  
Vol 56 (2) ◽  
pp. 398-405 ◽  
Author(s):  
Josef Pola ◽  
Jaroslav Včelák ◽  
Zdeněk Chvátal

The title reaction of hexafluorocyclobutene, 1,2-dichloro-3,3,4,4-tetrafluorocyclobutene and decafluorocyclohexene studied at total pressure 13.3 and 16 kPa yield oxalyl halides COX.COX (X = F, Cl) and C2F4 that undergo consecutive reactions to COF2, CO and X2. The oxidation of decafluorocyclohexene is preceded by retro-Diels-Alder decomposition affording hexafluorocyclobutene and C2F4. Two alternative mechanisms for the oxidation of the cyclobutenes are presented, one involving a novel cleavage of intermediary bicyclic dioxetanes. The decomposition of oxalyl fluoride into COF2 and CO is favored over its oxidation.


1989 ◽  
Vol 54 (8) ◽  
pp. 2064-2068 ◽  
Author(s):  
Jiří Sedláček ◽  
Zdeněk Vít

The zirconia supported CoMo catalysts and the commercial sample CoMo/Al2O3 were characterized by XPS measurements and by testing of activity in the HDS of thiophene at 280 °C and 1 MPa of total pressure. The XPS measurements revealed the better reducibility of molybdenum, higher sulphidability of cobalt and the absence of surface sulphur oxidation in the presence of zirconia support. The surface atomic concentration ratios S/Mo were 1.2 and 2.2 for zirconia and alumina supported catalysts, respectively. The activity of the zirconia supported CoMo catalyst normalized to the overal amounts of active metals was lower than that of the commercial CoMo/Al2O3 catalyst.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

The present numerical work studies the flow field in subsonic axial compressor stator passages for: (a) preceding rotor sweep (b) preceding rotor re-staggering (three stagger angle changes: 0°, +3° and +5°); and (c) stator sweeping (two 20° forward sweep schemes). The following are the motives for the study: at the off-design conditions, compressor rotors are re-staggered to alleviate the stage mismatching by adjusting the rows to the operating flow incidence. Fundamental to this is the understanding of the effects of rotor re-staggering on the downstream component. Secondly, sweeping the rotor stages alters the axial distance between the successive rotor-stator stages and necessitates that the stator vanes must also be swept. To the best of the author’s knowledge, stator sweeping to suit such scenarios has not been reported. The computational model for the study utilizes well resolved hexahedral grids. A commercial CFD package ANSYS® CFX 11.0 was used with standard k-ω turbulence model for the simulations. CFD results were well validated with experiments. The following observations were made: (1) When the rotor passage is closed by re-staggering, with the same mass flow rate and the same stator passage area, stators were subjected to negative incidences. (2) Effect of stator sweeping on the upstream rotor flow field is insignificant. Comparison of total pressure rise carried by the downstream stators suggests that an appropriate redesign of stator is essential to match with the swept rotors. (3) While sweeping the stator is not recommended, axial sweeping is preferable over true sweeping when it is necessary.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199439
Author(s):  
Baofeng Tu ◽  
Bin Xuan ◽  
Chuanpeng Li ◽  
Xinyu Zhang ◽  
Jun Hu

A distortion generator equipped with a motor-activated movable flat baffle was installed just upstream of a rectangular plenum entrance to investigate the effects of inlet total pressure distortion on the stability and performance of an auxiliary power unit (APU). Experiments and numerical simulations on a direct connect scale inlet model of the APU were carried out to obtain a quantitative relationship between the insertion depth of the flat baffle in the flow stream and the total pressure distortion intensity and region. In the experiments, the blocking coefficient and total pressure distortion coefficient were controlled by adjusting the insertion depth of the flat baffle and the mass flow. In the simulations, detailed flow field was analyzed based on the detached-eddy simulation (DES) method. The results show that the pressure distribution of the distorted flow on the aerodynamic interface plane (AIP) can be divided into a high-pressure region, a transition region, and a low-pressure region. The area affected by the distorted flow was larger than the inserting area of the flat baffle. That area was more related to the relative blocking coefficient, and less affected by the mass flow. The total pressure distortion coefficient had a linear relationship with the mass flow rate and is positively correlated with the relative blocking coefficient. As the relative blocking coefficient increased to a certain value, an exponential growth in the total pressure distortion coefficient occurred, and consequently, the flow field distortion was intensified. In the flow field, a pair of corner vortices were formed at the corner between the flat baffle and the bottom wall of the inlet pipe, and a large separation zone was formed behind the flat baffle and exhibits certain unsteady characteristics.


Author(s):  
Manjunath L Nilugal ◽  
K Vasudeva Karanth ◽  
Madhwesh N

This article presents the effect of volute chamfering on the performance of a forward swept centrifugal fan. The numerical analysis is performed to obtain the performance parameters such as static pressure rise coefficient and total pressure coefficient for various flow coefficients. The chamfer ratio for the volute is optimized parametrically by providing a chamfer on either side of the volute. The influence of the chamfer ratio on the three dimensional flow domain was investigated numerically. The simulation is carried out using Re-Normalisation Group (RNG) k-[Formula: see text] turbulence model. The transient simulation of the fan system is done using standard sliding mesh method available in Fluent. It is found from the analysis that, configuration with chamfer ratio of 4.4 is found be the optimum configuration in terms of better performance characteristics. On an average, this optimum configuration provides improvement of about 6.3% in static pressure rise coefficient when compared to the base model. This optimized chamfer configuration also gives a higher total pressure coefficient of about 3% validating the augmentation in static pressure rise coefficient with respect to the base model. Hence, this numerical study establishes the effectiveness of optimally providing volute chamfer on the overall performance improvement of forward bladed centrifugal fan.


Author(s):  
Pranay Seshadri ◽  
Shahrokh Shahpar ◽  
Geoffrey T. Parks

Robust design is a multi-objective optimization framework for obtaining designs that perform favorably under uncertainty. In this paper robust design is used to redesign a highly loaded, transonic rotor blade with a desensitized tip clearance. The tip gap is initially assumed to be uncertain from 0.5 to 0.85% span, and characterized by a beta distribution. This uncertainty is then fed to a multi-objective optimizer and iterated upon. For each iteration of the optimizer, 3D-RANS computations for two different tip gaps are carried out. Once the simulations are complete, stochastic collocation is used to generate mean and variance in efficiency values, which form the two optimization objectives. Two such robust design studies are carried out: one using 3D blade engineering design parameters (axial sweep, tangential lean, re-cambering and skew) and the other utilizing suction and pressure side surface perturbations (with bumps). A design is selected from each Pareto front. These designs are robust: they exhibit a greater mean efficiency and lower variance in efficiency compared to the datum blade. Both robust designs were also observed to have significantly higher aft and reduced fore tip loading. This resulted in a weaker clearance vortex, wall jet and double leakage flow, all of which lead to reduced mixed-out losses. Interestingly, the robust designs did not show an increase in total pressure at the tip. It is believed that this is due to a trade-off between fore-loading the tip and obtaining a favorable total pressure rise and higher mixed-out losses, or aft-loading the tip, obtaining a lower pressure rise and lower mixed-out losses.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 34
Author(s):  
Guoliang Hu ◽  
Feng Zhou ◽  
Lifan Yu

The main issue addressed in this paper involves the magnetorheological (MR) valve increasing the pressure drop by changing the internal structure, which leads to the increase of dimension sizes and the easy blocking of the internal channel. Optimizing the design of the traditional radial MR valve without changing the internal structure and whole dimension size is indispensable. Firstly, a radial MR valve with single excitation coil was proposed. The mathematical models of the field-dependent pressure drop and viscosity pressure drop in fluid flow channels were deduced, and the calculation formula of pressure drop was also established. Then, ANSYS software was used to simulate and analyze the distributions of the magnetic flux lines and magnetic flux densities of the proposed radial MR valve. Subsequently, the radial MR valve was simulated and analyzed by using the ANSYS first-order and zero-order simulation tools. In addition, the experimental test bench of the proposed MR valve was setup, the static performance of pressure drop was tested, and the change of pressure drop of the optimal radial MR valve under different loads was studied, furthermore, the response time with current of the initial and optimal radial MR valve were also investigated. Finally, the dynamic performances of the optimal radial MR valve controlled cylinder system under different currents, frequencies and amplitudes were tested, respectively. The experimental results indicate that the total pressure drop of the initial valve is 1.842 MPa when the applied current is 1.8 A, and the total pressure drop of the optimal valve is 2.58 MPa, the increase is 40.07%. Meanwhile, the maximum damping force of the optimal radial MR valve controlled cylinder system can reach about 3.6 kN at the current of 1.25 A, which shows a better optimization effect of the optimal radial MR valve.


Sign in / Sign up

Export Citation Format

Share Document