scholarly journals Deformation behavior and mechanical properties of periodic topological Ti structures fabricated by superplastic forming/diffusion bonding

Author(s):  
Zhiqiang Li ◽  
Bing Zhao ◽  
Jie Shao ◽  
Shengjing Liu
Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 152
Author(s):  
Peng Peng ◽  
Shaosong Jiang ◽  
Zhonghuan Qin ◽  
Zhen Lu

This work fabricated a double hollow structural component of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy by superplastic forming (SPF) and reaction-diffusion bonding (RDB). The superplastic characteristic and mechanical properties of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy sheets at 250–450 °C were studied. Tensile tests showed that the maximum elongation of tensile specimens was about 1276.3% at 400 °C under a strain rate of 1 × 10−3 s−1. Besides, the effect of bonding temperature and interface roughness on microstructure and mechanical properties of the reaction diffusion-bonded joints with a Cu interlayer was investigated. With the increase of temperature, the diffusion coefficient of Cu increases, and the diffusion transition region becomes wider, leading to tightening bonding of the joint. However, the bonding quality of the joint will deteriorate due to grain size growth at higher temperatures. Shear tests showed that the highest strength of the joints was 152 MPa (joint efficiency = 98.7%), which was performed at 460 °C.


2007 ◽  
Vol 551-552 ◽  
pp. 49-54 ◽  
Author(s):  
Zhi Qiang Li ◽  
X.H. Li

Superplastic forming and diffusion bonding (SPF/DB) processes have been growing mature and titanium SPF/DB components have found wide application in aerospace industry. With the development of industrial SPF/DB technology, the size of SPF/DB components become bigger and bigger, and the shapes of components become more complex. However, the component sizes are limited by equipments, dies and the size of sheet. SPF/DB combined with welding technologies could be one of the possible solutions to form larger and more integrated structures due to many advantages compared with conventional process. This paper studied the combination processing of SPF and other welding methods besides diffusion bonding, such as electron beam welding and laser beam welding, and explained the experiments performed in different processes, including SPF after welding plate and welding plate after SPF. The results show that the material exhibits both reasonable formability and excellent mechanical properties. Application samples such as covers were manufactured by the combination processing. Furthermore, prospects of the combining technology were discussed at the end of paper.


2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


2009 ◽  
Vol 472 (1-2) ◽  
pp. 546-550 ◽  
Author(s):  
Wen-Fu Ho ◽  
Chang-Hung Pan ◽  
Shih-Ching Wu ◽  
Hsueh-Chuan Hsu

2008 ◽  
Vol 584-586 ◽  
pp. 182-187
Author(s):  
Lilia Kurmanaeva ◽  
Yulia Ivanisenko ◽  
J. Markmann ◽  
Ruslan Valiev ◽  
Hans Jorg Fecht

Investigations of mechanical properties of nanocrystalline (nc) materials are still in interest of materials science, because they offer wide application as structural materials thanks to their outstanding mechanical properties. NC materials demonstrate superior hardness and strength as compared with their coarse grained counterparts, but very often they possess a limited ductility or show low uniform elongation due to poor strain hardening ability. Here, we present the results of investigation of the microstructure and mechanical properties of nc Pd and Pd-x%Ag (x=20, 60) alloys. The initially coarse grained Pd-x% Ag samples were processed by high pressure torsion, which resulted in formation of homogenous ultrafine grain structure. The increase of Ag contents led to the decrease of the resulted grain size and change in deformation behavior, because of decreasing of stacking fault energy (SFE). The samples with larger Ag contents demonstrated the higher values of hardness, yield stress and ultimate stress. Remarkably the uniform elongation had also increased with increase of strength.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


Sign in / Sign up

Export Citation Format

Share Document