Influence of the direction and flow rate of the cutting fluid on tool life in turning process of AISI 1045 steel

2007 ◽  
Vol 47 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Anselmo Eduardo Diniz ◽  
Ricardo Micaroni
Author(s):  
Anshu D. Jayal ◽  
A. K. Balaji

The use of Cutting Fluids (CFs) in machining operations is being increasingly questioned in recent years for environmental and economic reasons, leading to efforts in promoting dry, as well as minimal quantity of lubricant (MQL), machining. However, the tribological effectiveness and thermal aspects of CF action at modern cutting conditions, which not only involve relatively high cutting speeds but also advanced tool coatings and chip-breaking geometric features, need better understanding. This paper presents an experimental investigation into the effects of different CF application methods on various machining performance measures while cutting with commercially available flat-faced, as well as grooved, uncoated and coated cemented tungsten carbide tools. CF effects under dry, flood, and MQL conditions, were gauged through their influence on cutting forces, tool temperatures, tool-chip interfacial contact, and chip morphology during machining of AISI 1045 steel. The results show new trends on the individual cooling and lubricating effects of CF application methods, and the effects of their interactions with the tool coatings and the presence/absence of chip-breaking grooves.


Lubricants ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 70
Author(s):  
Vitor Baldin ◽  
Leonardo Rosa Ribeiro da Silva ◽  
Celso Ferraz Houck ◽  
Rogério Valentim Gelamo ◽  
Álisson Rocha Machado

The cutting fluids applied to the machining processes by the MQL process aim to reduce the machining temperatures and tool wear as well as improve the surface and dimensional finishing of the parts. To increase the efficiency of these fluids, graphene lubricating platelets are added. This work investigated the performance of three different cutting fluids with graphene sheets added and applied via MQL, considering the tool life, wear, and wear mechanisms acting on TiAlN-coated cemented carbide cutting tools in the end milling of AISI 1045 steel. We evaluated two vegetable- (MQL15 and LB1000) and one mineral-based (MQL14) neat oils and the same fluids with the addition of 0.05 and 0.1%wt graphene nanoplatelets. Dry cuts were also performed and investigated for comparison. The experiments were conducted under fixed cutting conditions (vc = 250 m/min, fz = 0.14 mm/tooth, ap = 1 mm, and ae = 20 mm). The end-of-tool-life criterion followed the guidelines of ISO 8688-1 (1989). To analyze the results, ANOVA and Tukey’s test were applied. The addition of graphene sheets in the vegetable-based cutting fluids effectively increased the lubricating properties, partially reducing the wear mechanisms acting on the tools. In addition, there was a predominance of thermal fatigue cracks and mechanical cracks as well as adhesive and abrasive wear mechanisms on the tools used in the cutting with the MQL15 and MQL14 fluids, indicating greater cyclical fluctuations in temperature and surface stresses.


Author(s):  
Anshu D. Jayal ◽  
A. K. Balaji

Environmental and economic pressures are causing reevaluation of the use of Cutting Fluids (CFs) in machining operations, leading to recent efforts in promoting dry, as well as minimal quantity of lubricant (MQL), machining. This paper presents an experimental investigation into the effects of different CF application methods on various machining performance measures under modern cutting conditions using uncoated and coated cemented tungsten carbide tools. CF effects under dry, flood, and MQL conditions, were gauged through their influence on cutting forces, tool temperatures, tool-chip interfacial friction, and chip morphology during machining of AISI 1045 steel using commercially available uncoated, and mono- and multi-layer coated, carbide tools. The results show new trends on the individual cooling and lubricating effects of CF application methods, and the integrated effects of their interactions with tool material, on tribological performance.


Author(s):  
Leonardo Geraldo Leite ◽  
Ítalo de Abreu Gonçalves ◽  
Carlos Henrique De Oliveira ◽  
Tarcísio Gonçalves De Brito ◽  
Sandra Miranda Neves ◽  
...  

The steel milling AISI 1045 has been gaining prominence in industry in recent years as it allows machined parts to be obtained with low-cost inserts. However, to ensure the final product quality, it is important that the milling for machining procedure be well planned in order to the cutters have their wear minimized in the process, as well as a considerable productivity rate with a zero occurrence of reworked parts or scraps. Thus, this paper presents a study about the quality of the machined surface on the end milling process of AISI 1045 steel using titanium nitride (TiN) coated carbide inserts, optimized for a combined design, using Design of Experiments (DOE). Statistical Process Control (SPC) is applied to analyze the process variations using X-bar and R control charts. The objective of this study is to identify the optimal combination of the input setup such as cutting speed (Vc), feed per tooth (fZ), work penetration (ae) and machining depth (ap) that is capable of minimize the process variation. The response measured is the roughness parameter Ra, observed under the influence of cutting fluid, tool wear, concentration and flow of the cutting fluid as noise. The obtained result was the stability of the Ra roughness for the AISI 1045 steel in end milling process, which is not influenced by noise variables due to Robust Parameter Design used in this study


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo da Rosa Vieira ◽  
Luciano Volcanoglo Biehl ◽  
Jorge Luis Braz Medeiros ◽  
Vagner Machado Costa ◽  
Rodrigo Jorge Macedo

AbstractQuench hardening aims at the microstructural transformation of steels in order to improve hardness and mechanical strength. The aim phase is, in most cases, the martensite. It is necessary to heat the material until it obtains its austenitization and quenching by immersion in a fluid. Currently, it is common to use watery polymeric solutions in this procedure. These fluids, which are the mixture of polymers in water, vary their thermal exchange capacity depending on the concentrations applied. The increase in concentration minimizes the removal of heat from the part, reducing the formation capacity of martensite, and developing a lower hardness and strong steel. In this work, microstructural characteristics and properties of AISI 1045 steel quenched in solutions based on polyvinylpyrrolidone (PVP) in 10, 15, 20, and 25% concentration were evaluated. The microstructural characterization quantified the percentage of the phases in each concentration, demonstrating a reduction of martensite as the concentrations were high. The investigation of the samples by x-ray diffraction confirmed the absence of austenite retained in the material. Furthermore, a microhardness scale between the core and the surface was constructed, in which a reduction gradient of the indices of this property towards the core of the sample was evidenced.


Sign in / Sign up

Export Citation Format

Share Document