Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools

Author(s):  
Marcelo Mendes de Aguiar ◽  
Anselmo Eduardo Diniz ◽  
Robson Pederiva
2020 ◽  
Vol 21 ◽  
pp. 189-193 ◽  
Author(s):  
S.V. Alagarsamy ◽  
M. Ravichandran ◽  
M. Meignanamoorthy ◽  
S. Sakthivelu ◽  
S. Dineshkumar

2016 ◽  
Vol 836-837 ◽  
pp. 132-138 ◽  
Author(s):  
Shu Cai Yang ◽  
Xiao Yang Cui ◽  
Yu Hua Zhang ◽  
Zhi Wei Wang

Tool wear is easy occurred in titanium alloy milling process which will affect the surface quality. Surface roughness and surface morphology as an important index to describe and evaluate the surface quality has a great influence on service performance. Therefore, the study on the effect of tool wear on surface qualities is important to improve the surface integrity of titanium alloy parts. Cutting radius of ball-end milling cutter is solved to analyze the effect of tool wear on the cutting radius. The tool wear and the surface qualities of TC4 are achieved through wear experiment. And then the influence law of tool wear on surface qualities and chip morphology are analyzed. The results show that surface roughness value decrease firstly and then increases and that chip morphology with flank wear increase from the unit chip to the serrated chip.


2011 ◽  
Vol 264-265 ◽  
pp. 894-900 ◽  
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari ◽  
Nurhayati Ab. Razak

Hardened materials like AISI H13 steel are generally regarded as s difficult to cut materials because of their hardness due to intense of carbon content, which however allows them to be used extensively in the hot working tools, dies and moulds. The challenges in machining steels at their hardened state led the way to many research works in amelioration its machinability. In this paper, preheating technique has been used to improve the machinability of H13 hardened steel for different cutting conditions. An experimental study has been performed to assess the effect of workpiece preheating using induction heating system to enhance the machinability of AISI H13. The preheated machining of AISI H13 for two different cutting conditions with TiAlN coated carbide tool is evaluated by examining tool wear, surface roughness and vibration. The advantages of preheated machining are demonstrated by a much extended tool life and stable cut as lower vibration/chatter amplitudes. The effects of preheating temperature were also investigated on the chip morphology during the end milling of AISI H13 tool steel, which resulted in reduction of chip serration frequency. The preheating temperature was maintained below the phase change temperature of AISI H13. The experimental results show that preheated machining led to appreciable increasing tool life compared to room temperature machining. Abrasive wear, attrition wear and diffusion wear are found to be a very prominent mechanism of tool wear. It has been also observed that preheated machining of the material lead to better surface roughness values as compared to room temperature machining.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6106
Author(s):  
Waleed Ahmed ◽  
Hussien Hegab ◽  
Atef Mohany ◽  
Hossam Kishawy

It is necessary to improve the machinability of difficult-to-cut materials such as hardened steel, nickel-based alloys, and titanium alloys as these materials offer superior properties such as chemical stability, corrosion resistance, and high strength to weight ratio, making them indispensable for many applications. Machining with self-propelled rotary tools (SPRT) is considered one of the promising techniques used to provide proper tool life even under dry conditions. In this work, an attempt has been performed to analyze, model, and optimize the machining process of AISI 4140 hardened steel using self-propelled rotary tools. Experimental analysis has been offered to (a) compare the fixed and rotary tools performance and (b) study the effect of the inclination angle on the surface quality and tool wear. Moreover, the current study implemented some artificial intelligence-based approaches (i.e., genetic programming and NSGA-II) to model and optimize the machining process of AISI 4140 hardened steel with self-propelled rotary tools. The feed rate, cutting velocity, and inclination angle were the selected design variables, while the tool wear, surface roughness, and material removal rate (MRR) were the studied outputs. The optimal surface roughness was obtained at a cutting speed of 240 m/min, an inclination angle of 20°, and a feed rate of 0.1 mm/rev. In addition, the minimum flank tool wear was observed at a cutting speed of 70 m/min, an inclination angle of 10°, and a feed rate of 0.15 mm/rev. Moreover, different weights have been assigned for the three studied outputs to offer different optimized solutions based on the designer’s interest (equal-weighted, finishing, and productivity scenarios). It should be stated that the findings of the current work offer valuable recommendations to select the optimized cutting conditions when machining hardened steel AISI 4140 within the selected ranges.


Author(s):  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Nguyen Tien Tung ◽  
Nguyen Duc Luan

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061


2013 ◽  
Vol 465-466 ◽  
pp. 1098-1102 ◽  
Author(s):  
Noor Hakim Rafai ◽  
Mohd Amri Lajis ◽  
N.A.J. Hosni

This paper discussed the behavior of cutting tool in terms of tool wear, tool life and surface roughness when machining an AISI D2 hardened steel. An experimental test was conducted at different cutting speeds (Vc) and radial depth of cut (ae) using PVD TiAlN coated carbide tool under dry condition. Tool failure modes and tool wear mechanism for all cutting tools were examined at various cutting parameters. Flank wear was found to be the predominant tool failure for cutting tools. The highest volume material removal (VMR) attained was 3750 mm3 meanwhile the highest tool life (TL) was 9.69 min. The surface roughness (Ra) values from 0.09 to 0.24 μm can be attained in the workpiece with a high material removal. The relationship of tool wear performance and surface integrity was established to lead an optimum parameter in order to have high material removal, maximum tool life as well as acceptable surface finish.


2013 ◽  
Vol 773-774 ◽  
pp. 437-447
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
Abou Ei Hossein A. Khaled ◽  
D. Sujan

This research presents the performance of Aluminum nitride ceramic in end milling using using TiAlN and TiN coated carbide tool insert under dry machining. The surface roughness of the work piece and tool wear was analyzed in this. The design of experiments (DOE) approach using Response surface methodology was implemented to optimize the cutting parameters of a computer numerical control (CNC) end milling machine. The analysis of variance (ANOVA) was adapted to identify the most influential factors on the CNC end milling process. The mathematical predictive model developed for surface roughness and tool wear in terms of cutting speed, feed rate, and depth of cut. The cutting speed is found to be the most significant factor affecting the surface roughness of work piece and tool wear in end milling process.


Sign in / Sign up

Export Citation Format

Share Document