Extracting plastic properties from in-plane displacement data of spherical indentation imprint

2021 ◽  
Vol 197 ◽  
pp. 106291
Author(s):  
Yewon Hwang ◽  
Karuppasamy Pandian Marimuthu ◽  
Naksoo Kim ◽  
Cheolsoo Lee ◽  
Hyungyil Lee
Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 440 ◽  
Author(s):  
Guangjian Peng ◽  
Fenglei Xu ◽  
Jianfeng Chen ◽  
Huadong Wang ◽  
Jiangjiang Hu ◽  
...  

Residual stresses, existed in engineering structures, could significantly influence the mechanical properties of structures. Accurate and non-destructive evaluation of the non-equibiaxial residual stresses in these structures is of great value for predicting their mechanical performance. In this work, investigating the mechanical behaviors of instrumented spherical indentation on stressed samples revealed that non-equibiaxial residual stresses could shift the load-depth curve upwards or downwards and cause the residual indentation imprint to be an elliptical one. Through theoretical, experimental, and finite element (FE) analyses, two characteristic indentation parameters, i.e., the relative change in loading curvature and the asymmetry factor of the residual indentation imprint, were found to have optimal sensitivity to residual stresses at a depth of 0.01R (R is the radius of spherical indenter). With the aid of dimensional analysis and FE simulations, non-equibiaxial residual stresses were quantitatively correlated with these two characteristic indentation parameters. The spherical indentation method was then proposed to evaluate non-equibiaxial residual stress based on these two correlations. Applications were illustrated on metallic samples (AA 7075-T6 and AA 2014-T6) with various introduced stresses. Both the numerical and experimental verifications demonstrated that the proposed method could evaluate non-equibiaxial surface residual stresses with reasonable accuracy.


2009 ◽  
Vol 24 (12) ◽  
pp. 3653-3663 ◽  
Author(s):  
Taihua Zhang ◽  
Peng Jiang ◽  
Yihui Feng ◽  
Rong Yang

Instrumented indentation tests have been widely adopted for elastic modulus determination. Recently, a number of indentation-based methods for plastic properties characterization have been proposed, and rigorous verification is absolutely necessary for their wide application. In view of the advantages of spherical indentation compared with conical indentation in determining plastic properties, this study mainly concerns verification of spherical indentation methods. Five convenient and simple models were selected for this purpose, and numerical experiments for a wide range of materials are carried out to identify their accuracy and sensitivity characteristics. The verification results show that four of these five methods can give relatively accurate and stable results within a certain material domain, which is defined as their validity range and has been summarized for each method.


2013 ◽  
Vol 586 ◽  
pp. 43-46 ◽  
Author(s):  
Aleš Materna ◽  
Jiri Nohava ◽  
Petr Haušild ◽  
Vladislav Oliva

The spherical indentation response of pressure vessel reactor steel with austenitic cladding is investigated both experimentally and numerically. The instrumented indentation test was performed for both materials at a sufficient distance from the bi-material interface, thus the results can be compared with the bulk data obtained from the standard tensile and compression tests. The stress – plastic strain curve for austenitic cladding estimated by a simplified inverse analysis of the indentation load – penetration curve is shifted to a harder response compared with that determined from the tensile test. One of the possible reasons, anisotropy of the cladding metal, was experimentally observed during the compression tests performed in the longitudinal orientation of the tensile test specimens and in the transverse orientation identical with the direction of the material indentation.


2015 ◽  
Vol 662 ◽  
pp. 59-62 ◽  
Author(s):  
Jiří Němeček ◽  
Vlastimil Kralik

This paper deals with microstructure and micromechanical properties of two commercially available aluminium foams (Alporas and Aluhab). Since none of the materials is available in a bulk and standard mechanical testing at macro-scale is not possible the materials need to be tested at micro-scale. To obtain both elastic and plastic properties quasi-static indentation was performed with two different indenter geometries (Berkovich and spherical tips). The material phase properties were analyzed with statistical grid indentation method and micromechanical homogenization was applied to obtain effective elastic wall properties. In addition, effective inelastic properties of cell walls were identified with spherical indentation. Constitutive parameters related to elasto-plastic material with linear isotropic hardening (the yield point and tangent modulus) were directly deduced from the load–depth curves of spherical indentation tests using formulations of the representative strain and stress introduced by Tabor.


2020 ◽  
Vol 405 ◽  
pp. 339-344
Author(s):  
Jiří Němeček ◽  
Jan Maňák ◽  
Jiří Němeček

The paper investigates deformations and plastic properties received from different material volumes and tests of magnesium samples. Small volume characteristics gained on single Mg crystals are compared to polycrystalline AZ31 alloy. Results of tests employing nanoindentation, focused ion beam milling and electron backscatter diffraction techniques are presented. Large differences were found between micro-beam testing and spherical indentation tests having the volume one order of magnitude apart. The plastic strength scaling factor was found 1.7 for the studied grain configurations and volumes.


2017 ◽  
Vol 734 ◽  
pp. 206-211 ◽  
Author(s):  
Zhuang Jin ◽  
Jian Ping Zhao

Cao and Lu had built a method to acquire the properties of materials. But they neglected the influence of strain hardening exponent n by introducing the representative strain which didan’t have any physical meaning. A new method from a continuous spherical indentation test was built, the influence of strain hardening exponent n were considered and the formulas of dimensionless functions defined in their work were improved in this present paper. Then the computational results from the new method and the actual results were compared and the error is about 8%.


2007 ◽  
Vol 22 (4) ◽  
pp. 1043-1063 ◽  
Author(s):  
Hongzhi Lan ◽  
T.A. Venkatesh

A comprehensive study of the sensitivity characteristics associated with the determination of the elasto-plastic properties of a large number of materials using several combinations of dual, triple, and quadruple sharp indentation, and spherical indentation illustrates that: (i) The lowest sensitivity to the determination of plastic properties is observed for the indenter combination that corresponds either to the largest difference in the corresponding representative stresses or the largest difference in the indenter apex angles. (ii) The triple or quadruple sharp indenter combinations considered in the present study do not show a significant improvement in the sensitivity characteristics when compared to that of the dual sharp indentation. (iii) In the determination of plastic properties through spherical indentation where two representative stresses are invoked, the highest and the lowest sensitivity, respectively, are observed for the combinations in which the differences in the representative stresses are the lowest and the highest. The sensitivity is further reduced if a large number of representative stresses are considered for the reverse analysis.


Sign in / Sign up

Export Citation Format

Share Document