Progressive wear based tool failure analysis during dry and MQL assisted sustainable micro-milling

Author(s):  
Suman Saha ◽  
Sankha Deb ◽  
Partha Pratim Bandyopadhyay
2004 ◽  
Vol 471-472 ◽  
pp. 32-36
Author(s):  
Yi Wan ◽  
Zhan Qiang Liu ◽  
Xing Ai ◽  
J.G. Liu

Cutting tool and machining parameters selection are central activity in process planning, which was traditionally performed by numerical control programmers or machine tool operators. The surface integrity has great effect on part quality and the sudden tool failure increases the machining costs greatly. The present paper details the development of a cutting database system with surface integrity prediction and tool failure analysis functions (CUT-P&A). The design and implement of this system has been presented. The system includes three main modules: cutting database, premature tool failure analysis and surface integrity prediction. The functions of this system include cutting tool selection and machining parameters recommendation, prediction of surface integrity and premature tool wear analysis. A case has been studied to explain the application of the system. The wide application of this system will be helpful for machining tool programmers, the improvement of machined part quality and the reduction of machine cost.


2014 ◽  
Vol 668-669 ◽  
pp. 916-919 ◽  
Author(s):  
Li Xin Wang ◽  
Wen Ge Qiu

A failure analytical tool, Failure Anticipation Analysis (FAA) of modern TRIZ, is briefly described in this paper. FAA algorithm is put forward, and employed to solve a failure problem of E-bike lighting system in the Case study. The practice shows the power and efficiency of FAA.


Author(s):  
P.G. Pawar ◽  
P. Duhamel ◽  
G.W. Monk

A beam of ions of mass greater than a few atomic mass units and with sufficient energy can remove atoms from the surface of a solid material at a useful rate. A system used to achieve this purpose under controlled atmospheres is called an ion miliing machine. An ion milling apparatus presently available as IMMI-III with a IMMIAC was used in this investigation. Unless otherwise stated, all the micro milling operations were done with Ar+ at 6kv using a beam current of 100 μA for each of the two guns, with a specimen tilt of 15° from the horizontal plane.It is fairly well established that ion bombardment of the surface of homogeneous materials can produce surface topography which resembles geological erosional features.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


Sign in / Sign up

Export Citation Format

Share Document