Vibratory synchronization and coupling dynamic characteristics of multiple unbalanced rotors on a mass-spring rigid base

Author(s):  
Xueliang Zhang ◽  
Bangchun Wen ◽  
Chunyu Zhao
Author(s):  
Y-W Lee ◽  
C-W Lee

Dynamic characteristics of a prototype active engine mount (AEM), designed on the basis of a hydraulic engine mount, have been investigated and an adaptive controller for the AEM has been designed. An equivalent mass-spring-damper AEM model is proposed, and the transfer function that describes the dynamic characteristics of the AEM is deduced from mathematical analysis of the model. The damping coefficient of the model is derived by considering the non-linear flow effect in the inertia track. Experiments confirmed that the model precisely describes the dynamic characteristics of the AEM. An adaptive controller using the filtered-X LMS algorithm is designed to cancel the force transmitted through the AEM. The stability of the LMS algorithm is guaranteed by using the secondary path transfer function derived on the basis of the dynamic model of the AEM. The performance test in the laboratory shows that the AEM system is capable of significantly reducing the force transmitted through the AEM.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771370 ◽  
Author(s):  
Hai Xu ◽  
Ling-Li Cui ◽  
De-Guang Shang

The dynamic characteristics of the mill and the drive system are mutually coupled and affected closed-loop system. However, most research has considered only the vibration of the drive system or the vibration of the mill to determine the cause of the accident in the equipment condition monitoring and fault diagnosis process. Condition monitoring and fault diagnosis based on this type of approach can lead to misdiagnosis or missed diagnosis in determining faults in actual systems. So, in this study, a dynamic model of the coupling between a mill and its drive system was developed to study the interaction of the mill and the drive system with the goal of increasing the accuracy of diagnostic methods and to improve the quality of the rolled material. A nonlinear coupling dynamic model was formulated to represent the relation between the gearbox vibration amplitude and various time-varying parameters to study the effects of various parameters on the drive system vibration characteristic under unsteady lubrication. Simulations results showed that increasing the strip speed, the input strip thickness, or the output strip thickness or decreasing the lubricating oil temperature or the roller radius caused the vibration amplitude of the drive system to increase. The vibration frequency caused by variations in the strip inlet or outlet thickness can be transmitted to the drive system, and gear meshing frequency of the gearbox can be transmitted to the mill. Test data from an actual cold rolling mill verified the accuracy of the model. The model was shown to be capable of simulating the mutually coupled and affected mechanism between a mill and its drive system.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jun Wang ◽  
Li-xin Lu ◽  
Pengjiang Qian ◽  
Li-qiang Huang ◽  
Yan Hua ◽  
...  

The aim of this paper is to develop a new frequency response function- (FRF-) based indirect inverse substructuring method without measuring system-level FRFs in the coupling DOFs for the analysis of the dynamic characteristics of a three-substructure coupled product transport system with rigid and flexible coupling. By enforcing the dynamic equilibrium conditions at the coupling coordinates and the displacement compatibility conditions, a closed-form analytical solution to inverse substructuring analysis of multisubstructure coupled product transport system is derived based on the relationship of easy-to-monitor component-level FRFs and the system-level FRFs at the coupling coordinates. The proposed method is validated by a lumped mass-spring-damper model, and the predicted coupling dynamic stiffness is compared with the direct computation, showing exact agreement. The method developed offers an approach to predict the unknown coupling dynamic stiffness from measured FRFs purely. The suggested method may help to obtain the main controlling factors and contributions from the various structure-borne paths for product transport system.


2010 ◽  
Vol 34-35 ◽  
pp. 44-49 ◽  
Author(s):  
Ying Ze Wang

This paper is concerned with an analysis of the dynamic characteristics of the high performance launcher—rarefaction wave gun(RAVEN) by numerical simulation. Based on its launch mechanism and launch structure, a rigid-flexible coupling dynamic model which considered the coupling effect between the flexible virbation of the launch barrel and the motion behaviors of the other parts of the RAVEN is established via a subsystems method. The actual motion of the projectile and inertial breech during the lauching are described by the interior ballistic equations of the RAVEN. The dynamic characterisitcs of RAVEN is illustrated by the numerical simulation about a small caliber launcher, and the interaction between launch barrel and the other parts is also studied.


2017 ◽  
Vol 9 (12) ◽  
pp. 2178-2186 ◽  
Author(s):  
Yu Liu ◽  
Zixiang Xu ◽  
Hongbin Xu ◽  
Yajie Chen

Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Crystal A. Heshmat

The expanded application of high-speed rotor systems operating on compliant foil bearings will be greatly enhanced with the ability to adequately couple multiple shaft systems with differing bearing systems and dynamic performance. In this paper the results of an analytical tradeoff study assessing coupling dynamic characteristics and their impact on coupled rotor-bearing system dynamics are presented. This analysis effort was completed in an effort to establish the form of characteristics needed to couple foil bearing supported rotors to ball bearing supported rotors, other foil bearing supported rotors as well as coupling rigid and flexible rotors both supported on foil bearings. The conclusions from this study indicate that with appropriate coupling design, a wide array of foil bearing supported rotor systems may be successfully coupled.


Sign in / Sign up

Export Citation Format

Share Document