Numerical investigation of impingement heat transfer on smooth and roughened surfaces in a high-pressure turbine inner casing

2020 ◽  
Vol 149 ◽  
pp. 106186 ◽  
Author(s):  
Fujuan Tong ◽  
Wenxuan Gou ◽  
Zhenan Zhao ◽  
Wenjing Gao ◽  
Honglin Li ◽  
...  
Author(s):  
Knut Lehmann ◽  
Richard Thomas ◽  
Howard Hodson ◽  
Vassilis Stefanis

An experimental study has been conducted to investigate the distribution of the convective heat transfer on the shroud of a high pressure turbine blade in a large scale rotating rig. A continuous thin heater foil technique has been adapted and implemented on the turbine shroud. Thermochromic Liquid Crystals were employed for the surface temperature measurements to derive the experimental heat transfer data. The heat transfer is presented on the shroud top surfaces and the three fins. The experiments were conducted for a variety of Reynolds numbers and flow coefficients. The effects of different inter-shroud gap sizes and reduced fin tip clearance gaps were also investigated. Details of the shroud flow field were obtained using an advanced Ammonia-Diazo surface flow visualisation technique. CFD predictions are compared with the experimental data and used to aid interpretation. Contour maps of the Nusselt number reveal that regions of highest heat transfer are mostly confined to the suction side of the shroud. Peak values exceed the average by as much as 100 percent. It has been found that the interaction between leakage flow through the inter-shroud gaps and the fin tip leakage jets are responsible for this high heat transfer. The inter-shroud gap leakage flow causes a disruption of the boundary layer on the turbine shroud. Furthermore, the development of the large recirculating shroud cavity vortices is severely altered by this leakage flow.


Author(s):  
F. Mumic ◽  
L. Ljungkruna ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the heat transfer and fluid flow in a transonic high-pressure turbine stator vane passage. Four turbulence models (the Spalart-Allmaras model, the low-Reynolds-number realizable k-ε model, the shear-stress transport (SST) k-ω model and the v2-f model) are used in order to assess the capability of the models to predict the heat transfer and pressure distributions. The simulations are performed using the FLUENT commercial software package, but also two other codes, the in-house code VolSol and the commercial code CFX are used for comparison with FLUENT results. The results of the three-dimensional simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. It is observed that the predictions of the vane pressure field agree well with experimental data, and that the pressure distribution along the profile is not strongly affected by choice of turbulence model. It is also shown that the v2-f model yields the best agreement with the measurements. None of the tested models are able to predict transition correctly.


2021 ◽  
Author(s):  
Patrick R. Jagerhofer ◽  
Marios Patinios ◽  
Tobias Glasenapp ◽  
Emil Göttlich ◽  
Federica Farisco

Abstract Due to stringent environmental legislation and increasing fuel costs, the efficiencies of modern turbofan engines have to be further improved. Commonly, this is facilitated by increasing the turbine inlet temperatures in excess of the melting point of the turbine components. This trend has reached a point where not only the high-pressure turbine has to be adequately cooled, but also components further downstream in the engine. Such a component is the turbine center frame (TCF), having a complex aerodynamic flow field that is also highly influenced by purge-mainstream interactions. The purge air, being injected through the wheelspace cavities of the upstream high-pressure turbine, bears a significant cooling potential for the TCF. Despite this, fundamental knowledge of the influencing parameters on heat transfer and film cooling in the TCF is still missing. This paper examines the influence of purge-to-mainstream blowing ratio, purge-to-mainstream density ratio and purge flow swirl angle on the convective heat transfer coefficient and the film cooling effectiveness in the TCF. The experiments are conducted in a sector-cascade test rig specifically designed for such heat transfer studies using infrared thermography and tailor-made flexible heating foils with constant heat flux. The inlet flow is characterized by radially traversing a five-hole-probe. Three purge-to-mainstream blowing ratios and an additional no purge case are investigated. The purge flow is injected without swirl and also with engine-similar swirl angles. The purge swirl and blowing ratio significantly impact the magnitude and the spread of film cooling in the TCF. Increasing blowing ratios lead to an intensification of heat transfer. By cooling the purge flow, a moderate variation in purge-to-mainstream density ratio is investigated, and the influence is found to be negligible.


Author(s):  
Richard Celestina ◽  
Spencer Sperling ◽  
Louis Christensen ◽  
Randall Mathison ◽  
Hakan Aksoy ◽  
...  

Abstract This paper presents the development and implementation of a new generation of double-sided heat-flux gauges at The Ohio State University Gas Turbine Laboratory (GTL) along with heat transfer measurements for film-cooled airfoils in a single-stage high-pressure transonic turbine operating at design corrected conditions. Double-sided heat flux gauges are a critical part of turbine cooling studies, and the new generation improves upon the durability and stability of previous designs while also introducing high-density layouts that provide better spatial resolution. These new customizable high-density double-sided heat flux gauges allow for multiple heat transfer measurements in a small geometric area such as immediately downstream of a row of cooling holes on an airfoil. Two high-density designs are utilized: Type A consists of 9 gauges laid out within a 5 mm by 2.6 mm (0.20 inch by 0.10 inch) area on the pressure surface of an airfoil, and Type B consists of 7 gauges located at points of predicted interest on the suction surface. Both individual and high-density heat flux gauges are installed on the blades of a transonic turbine experiment for the second build of the High-Pressure Turbine Innovative Cooling program (HPTIC2). Run in a short duration facility, the single-stage high-pressure turbine operated at design-corrected conditions (matching corrected speed, flow function, and pressure ratio) with forward and aft purge flow and film-cooled blades. Gauges are placed at repeated locations across different cooling schemes in a rainbow rotor configuration. Airfoil film-cooling schemes include round, fan, and advanced shaped cooling holes in addition to uncooled airfoils. Both the pressure and suction surfaces of the airfoils are instrumented at multiple wetted distance locations and percent spans from roughly 10% to 90%. Results from these tests are presented as both time-average values and time-accurate ensemble averages in order to capture unsteady motion and heat transfer distribution created by strong secondary flows and cooling flows.


2021 ◽  
pp. 1-26
Author(s):  
Patrick René Jagerhofer ◽  
Marios Patinios ◽  
Tobias Glasenapp ◽  
Emil Goettlich ◽  
Federica Farisco

Abstract The imperative improvement in the efficiency of turbofan engines is commonly facilitated by increasing the turbine inlet temperature. This development has reached a point where also components downstream of the high-pressure turbine have to be adequately cooled. Such a component is the turbine center frame (TCF), known for a complex aerodynamic flow highly influenced by purge-mainstream interactions. The purge air, being injected through the wheelspace cavities of the upstream high-pressure turbine, bears a significant cooling potential for the TCF. Despite this, fundamental knowledge of the influencing parameters on heat transfer and film cooling in the TCF is still missing. This paper examines the influence of purge-to-mainstream blowing ratio, density ratio and purge swirl angle on heat transfer and film cooling in the TCF. The experiments are conducted in a sector-cascade test rig specifically designed for such heat transfer studies using infrared thermography and tailor-made flexible heating foils with constant heat flux. Three purge-to-mainstream blowing ratios and an additional no purge case are investigated. The purge flow is injected without swirl and also with engine-similar swirl angles. The purge swirl and blowing ratio significantly impact the magnitude and the spread of film cooling in the TCF. Increasing blowing ratios lead to an intensification of heat transfer. By cooling the purge flow, a moderate variation in purge-to-mainstream density ratio is investigated, and the influence is found to be negligible.


Author(s):  
Prasert Prapamonthon ◽  
Bo Yin ◽  
Guowei Yang ◽  
Mohan Zhang

Abstract To obtain high power and thermal efficiency, the 1st stage nozzle guide vanes of a high-pressure turbine need to operate under serious circumstances from burned gas coming out of combustors. This leads to vane suffering from effects of high thermal load, high pressure and turbulence, including flow-separated transition. Therefore, it is necessary to improve vane cooling performance under complex flow and heat transfer phenomena caused by the integration of these effects. In fact, these effects on a high-pressure turbine vane are controlled by several factors such as turbine inlet temperature, pressure ratio, turbulence intensity and length scale, vane curvature and surface roughness. Furthermore, if the vane is cooled by film cooling, hole configuration and blowing ratio are important factors too. These factors can change the aerothermal conditions of the vane operation. The present work aims to numerically predict sensitivity of cooling performances of the 1st stage nozzle guide vane under aerodynamic and thermal variations caused by three parameters i.e. pressure ratio, coolant inlet temperature and height of vane surface roughness using Computational Fluid Dynamics (CFD) with Conjugate Heat Transfer (CHT) approach. Numerical results show that the coolant inlet temperature and the vane surface roughness parameters have significant effects on the vane temperature, thereby affecting the vane cooling performances significantly and sensitively.


Author(s):  
Chaoyi Wan ◽  
Yu Rao ◽  
Xiang Zhang

A numerical investigation of the heat transfer characteristics within an array of impingement jets on a flat and square pin-fin roughened plate with spent air in one direction has been conducted. Four types of optimized pin-fin configurations and the flat plate have been investigated in the Reynolds number range of 15000–35000. All the computation results have been validated well with the data of published literature. The effects of variation of jet Reynolds number and different configurations on the distribution of the average and local Nusselt number and the related pressure loss have been obtained. The highest total heat transfer rate increased up to 162% with barely any extra pressure loss compared with that of the flat plate. Pressure distributions and streamlines have also been captured to explain the heat transfer characteristic.


Author(s):  
Markus Schmidt ◽  
Christoph Starke

This article presents results for the coupled simulation of a high-pressure turbine stage in consideration of unsteady hot gas flows. A semi-unsteady coupling process was developed to solve the conjugate heat transfer problem for turbine components of gas turbines. Time-resolved CFD simulations are coupled to a finite element solver for the steady state heat conduction inside of the blade material. A simplified turbine stage geometry is investigated in this paper to describe the influence of the unsteady flow field onto the time-averaged heat transfer. Comparisons of the time-resolved results to steady state results indicate the importance of a coupled simulation and the consideration of the time-dependent flow-field. Different film-cooling configurations for the turbine NGV are considered, resulting in different temperature and pressure deficits in the vane wake. Their contribution to non-linear effects causing the time-averaged heat load to differ from a steady result is discussed to further highlight the necessity of unsteady design methods for future turbine developments. A strong increase in the pressure side heat transfer coefficients for unsteady simulations is observed in all results. For higher film-cooling mass flows in the upstream row, the preferential migration of hot fluid towards the pressure side of a turbine blade is amplified as well, which leads to a strong increase in material temperature at the pressure side and also in the blade tip region.


Sign in / Sign up

Export Citation Format

Share Document