Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate

2005 ◽  
Vol 21 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Preeti Lodha ◽  
Anil N. Netravali
Carbon ◽  
2020 ◽  
Vol 161 ◽  
pp. 350-358 ◽  
Author(s):  
Xianrong Huang ◽  
Renfu Li ◽  
Lijian Zeng ◽  
Xueling Li ◽  
Zhaojun Xi ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jong Sung Won ◽  
Ji Eun Lee ◽  
Da Young Jin ◽  
Seung Goo Lee

The effective utilization of original natural fibers as indispensable components in natural resins for developing novel, low-cost, eco-friendly biocomposites is one of the most rapidly emerging fields of research in fiber-reinforced composite. The objective of this study is to investigate the interfacial adhesion properties, water absorption, biodegradation properties, and mechanical properties of the kenaf/soy protein isolate- (SPI-) PVA composite. Experimental results showed that 20 wt% poly (vinyl alcohol) (PVA) and 8 wt% glutaraldehyde (GA) created optimum conditions for the consolidation of the composite. The increase of interfacial shear strength enhanced the composites flexural and tensile strength of the kenaf/SPI-PVA composite. The kenaf/SPI-PVA mechanical properties of the composite also increased with the content of cross-linking agent. Results of the biodegradation test indicated that the degradation time of the composite could be controlled by the cross-linking agent. The degradation rate of the kenaf/SPI-PVA composite with the cross-linking agent was lower than that of the composite without the cross-linking agent.


2012 ◽  
Vol 557-559 ◽  
pp. 987-990
Author(s):  
Yu Feng Ban ◽  
Hai Feng Zhu ◽  
Wei Zhao

An environment-friendly soy protein isolate (SPI)-based adhesive for wood was prepared using denatured alcohol-modified SPI, calcium hydroxide and sodium silicate. On the basis of the single factor test results, an orthogonal test of 4 elements and 3 levels was carried out to optimize formula ingredients. The modified SPI adhesive contained more calcium hydroxide than unmodified SPI adhesive and exhibited good performance. The shear strength of the specimen bonded with the modified adhesive was 82.3 MPa; after three cycles of water-soaking and air-drying, the decrease in shear strength was as low as 7.9%.


RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112317-112324 ◽  
Author(s):  
Yingying Han ◽  
Lijuan Wang

SiO2 nanoparticles with different sizes were prepared under ultrasonic irradiation and incorporated with soy protein isolate (SPI) films.


Sign in / Sign up

Export Citation Format

Share Document