LED lighting affects the composition and biological activity of Cannabis sativa secondary metabolites

2019 ◽  
Vol 132 ◽  
pp. 177-185 ◽  
Author(s):  
Dvory Namdar ◽  
Dana Charuvi ◽  
Vinayka Ajjampura ◽  
Moran Mazuz ◽  
Aurel Ion ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3031 ◽  
Author(s):  
Dvora Namdar ◽  
Hillary Voet ◽  
Vinayaka Ajjampura ◽  
Stalin Nadarajan ◽  
Einav Mayzlish-Gati ◽  
...  

Mixtures of different Cannabis sativa phytocannabinoids are more active biologically than single phytocannabinoids. However, cannabis terpenoids as potential instigators of phytocannabinoid activity have not yet been explored in detail. Terpenoid groups were statistically co-related to certain cannabis strains rich in Δ9-tetrahydrocannabinolic acid (THCA) or cannabidiolic acid (CBDA), and their ability to enhance the activity of decarboxylase phytocannabinoids (i.e., THC or CBD) was determined. Analytical HPLC and GC/MS were used to identify and quantify the secondary metabolites in 17 strains of C. sativa, and correlations between cannabinoids and terpenoids in each strain were determined. Column separation was used to separate and collect the compounds, and cell viability assay was used to assess biological activity. We found that in “high THC” or “high CBD” strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence. The correlation in a particular strain between THCA or CBDA and a certain set of terpenoids, and the partial specificity in interaction may have influenced the cultivation of cannabis and may have implications for therapeutic treatments.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 400
Author(s):  
Henry Lowe ◽  
Blair Steele ◽  
Joseph Bryant ◽  
Ngeh Toyang ◽  
Wilfred Ngwa

The cannabis plant (Cannabis sativa L.) produces an estimated 545 chemical compounds of different biogenetic classes. In addition to economic value, many of these phytochemicals have medicinal and physiological activity. The plant is most popularly known for its two most-prominent and most-studied secondary metabolites—Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Both Δ9-THC and CBD have a wide therapeutic window across many ailments and form part of a class of secondary metabolites called cannabinoids—of which approximately over 104 exist. This review will focus on non-cannabinoid metabolites of Cannabis sativa that also have therapeutic potential, some of which share medicinal properties similar to those of cannabinoids. The most notable of these non-cannabinoid phytochemicals are flavonoids and terpenes. We will also discuss future directions in cannabis research and development of cannabis-based pharmaceuticals. Caflanone, a flavonoid molecule with selective activity against the human viruses including the coronavirus OC43 (HCov-OC43) that is responsible for COVID-19, and certain cancers, is one of the most promising non-cannabinoid molecules that is being advanced into clinical trials. As validated by thousands of years of the use of cannabis for medicinal purposes, vast anecdotal evidence abounds on the medicinal benefits of the plant. These benefits are attributed to the many phytochemicals in this plant, including non-cannabinoids. The most promising non-cannabinoids with potential to alleviate global disease burdens are discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 210 ◽  
Author(s):  
Zbigniew Adamski ◽  
Linda L. Blythe ◽  
Luigi Milella ◽  
Sabino A. Bufo

Plants produce many secondary metabolites, which reveal biological activity [...]


2020 ◽  
pp. 128378
Author(s):  
Ibrahim Halil Gecibesler ◽  
Faruk Disli ◽  
Sinan Bayindir ◽  
Mahmut Toprak ◽  
Ali Riza Tufekci ◽  
...  

Author(s):  
Henry Lowe ◽  
Blair Steele ◽  
Joseph Bryant ◽  
Ngeh Toyang ◽  
Wilfred Ngwa

The Cannabis plant (Cannabis sativa L.) produces an estimated 545 chemical compounds of different biogenetic classes. In addition to economic value, many of these phytochemicals have medicinal and physiological activity. The plant is most popularly known for its two most prominent and most studied secondary metabolites— Δ9-Tetrahydrocannabinol (Δ9-THC) and Cannabidiol (CBD). Both Δ9-THC and CBD have a wide therapeutic window across many ailments and form part of a class of secondary metabolites called cannabinoids—of which approximately over 104 exist. This review will focus on non-cannabinoid metabolites of Cannabis sativa that also have therapeutic potential, some of which share medicinal properties similar to those of cannabinoids. The most notable of these non-cannabinoid phytochemicals are flavonoids and terpenes. We will also discuss future directions in cannabis research and development of cannabis-based pharmaceuticals. Caflanone, a flavonoid molecule with selective activity against the human viruses including the coronavirus SARS-COV2, and certain cancers, is one of the most promising non-cannabinoid molecules that is being advanced into clinical trials. As validated by thousands of years of the use of cannabis for medicinal purposes, vast anecdotal evidence abounds on the medicinal benefits of the plant. These benefits are attributed to the many phytochemicals in this plant, including non-cannabinoids. The most promising non-cannabinoids with potential to alleviate global disease burdens are discussed.


Sign in / Sign up

Export Citation Format

Share Document