scholarly journals Chemical Diversity and Biological Activity of Secondary Metabolites from Soft Coral Genus Sinularia since 2013

Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.

Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 41 ◽  
Author(s):  
Yasmin A. Elkhawas ◽  
Ahmed M. Elissawy ◽  
Mohamed S. Elnaggar ◽  
Nada M. Mostafa ◽  
Eman Al-Sayed ◽  
...  

One of the most widely distributed soft coral species, found especially in shallow waters of the Indo-Pacific region, Red Sea, Mediterranean Sea, and also the Arctic, is genus Sacrophyton. The total number of species belonging to it was estimated to be 40. Sarcophyton species are considered to be a reservoir of bioactive natural metabolites. Secondary metabolites isolated from members belonging to this genus show great chemical diversity. They are rich in terpenoids, in particular, cembranoids diterpenes, tetratepenoids, triterpenoids, and ceramide, in addition to steroids, sesquiterpenes, and fatty acids. They showed a broad range of potent biological activities, such as antitumor, neuroprotective, antimicrobial, antiviral, antidiabetic, antifouling, and anti-inflammatory activity. This review presents all isolated secondary metabolites from species of genera Sacrophyton, as well as their reported biological activities covering a period of about two decades (1998–2019). It deals with 481 metabolites, including 323 diterpenes, 39 biscembranoids, 11 sesquiterpenes, 53 polyoxygenated sterols, and 55 miscellaneous and their pharmacological activities.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5386
Author(s):  
Shean-Yeaw Ng ◽  
Chin-Soon Phan ◽  
Takahiro Ishii ◽  
Takashi Kamada ◽  
Toshiyuki Hamada ◽  
...  

Members of the marine soft coral genus Xenia are rich in a diversity of diterpenes. A total of 199 terpenes consisting of 14 sesquiterpenes, 180 diterpenes, and 5 steroids have been reported to date. Xenicane diterpenes were reported to be the most common chemical skeleton biosynthesized by members of this genus. Most of the literature reported the chemical diversity of Xenia collected from the coral reefs in the South China Sea and the coastal waters of Taiwan. Although there was a brief review on the terpenoids of Xenia in 2015, the present review is a comprehensive overview of the structural diversity of secondary metabolites isolated from soft coral genus Xenia and their potent biological activity as reported between 1977 to 2019.


2019 ◽  
Vol 19 (15) ◽  
pp. 1204-1218 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Junhong Liu ◽  
Dayong Shi ◽  
Zheng Li

: As important marine biological resources, corals produce a large amount of active organic compounds in their secondary metabolic processes, including numerous brominated, chlorinated, and iodinated compounds. These compounds, with novel structures and unique activities, guide the discovery and research of important lead compounds and novel biological mechanisms. Through a large number of literature surveys, this paper summarized a total of 145 halogenated secondary metabolites which were roughly divided into four major classes of terpenes, prostaglandins, steroids and alkaloids, and they were mainly isolated from ten coral families, Ellisellidae, Gorgoniidae, Briareidae, Plexauridae, Anthothelidae, Alcyoniidae, Clavularidae, Tubiporidae, Nephtheidae and Dendrophyllidae to the best of our knowledge. In addition, their organism species, structure composition and biological activity were also discussed in the form of a chart in this essay.


Planta Medica ◽  
2020 ◽  
Vol 86 (12) ◽  
pp. 805-821 ◽  
Author(s):  
Xiu-Qi Li ◽  
Kuo Xu ◽  
Xin-Min Liu ◽  
Peng Zhang

AbstractFungi are well known for their ability to synthesize secondary metabolites, which have proven to be a rich resource for exploring lead compounds with medicinal and/or agricultural importance. The genera Aspergillus, Penicillium, and Talaromyces are the most widely studied fungal groups, from which a plethora of bioactive metabolites have been characterized. However, relatively little attention has been paid to the genus Paecilomyces, which has been reported to possess great potential for its application as a biocontrol agent. Meanwhile, a wide structural array of metabolites with attractive bioactivities has been reported from this genus. This review attempts to provide a comprehensive overview of Paecilomyces species, with emphasis on the chemical diversity and relevant biological activities of these metabolic products. Herein, a total of 148 compounds and 80 references are cited in this review, which is expected to be beneficial for the development of medicines and agrochemicals in the near future.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 18
Author(s):  
Wei Chen ◽  
Qiongbo Hu

Fungi can synthesize a wealth of secondary metabolites, which are widely used in the exploration of lead compounds of pharmaceutical or agricultural importance. Beauveria, Metarhizium, and Cordyceps are the most extensively studied fungi in which a large number of biologically active metabolites have been identified. However, relatively little attention has been paid to Purpureocillium lilacinum. P. lilacinum are soil-habituated fungi that are widely distributed in nature and are very important biocontrol fungi in agriculture, providing good biological control of plant parasitic nematodes and having a significant effect on Aphidoidea, Tetranychus cinnbarinus, and Aleyrodidae. At the same time, it produces secondary metabolites with various biological activities such as anticancer, antimicrobial, and insecticidal. This review attempts to provide a comprehensive overview of the secondary metabolites of P. lilacinum, with emphasis on the chemical diversity and biological activity of these secondary metabolites and the biosynthetic pathways, and gives new insight into the secondary metabolites of medical and entomogenous fungi, which is expected to provide a reference for the development of medicine and agrochemicals in the future.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 307
Author(s):  
Diaa T. A. Youssef ◽  
Hadeel Almagthali ◽  
Lamiaa A. Shaala ◽  
Eric W. Schmidt

Tunicates (ascidians) are common marine invertebrates that are an exceptionally important source of natural products with biomedical and pharmaceutical applications, including compounds that are used clinically in cancers. Among tunicates, the genus Didemnum is important because it includes the most species, and it belongs to the most speciose family (Didemnidae). The genus Didemnum includes the species D. molle, D. chartaceum, D. albopunctatum, and D. obscurum, as well as others, which are well known for their chemically diverse secondary metabolites. To date, investigators have reported secondary metabolites, usually including bioactivity data, for at least 69 members of the genus Didemnum, leading to isolation of 212 compounds. Many of these compounds exhibit valuable biological activities in assays targeting cancers, bacteria, fungi, viruses, protozoans, and the central nervous system. This review highlights compounds isolated from genus Didemnum through December 2019. Chemical diversity, pharmacological activities, geographical locations, and applied chemical methods are described.


Author(s):  
Alessia Caso ◽  
Fernanda Barbosa da Silva ◽  
Germana Esposito ◽  
Roberta Teta ◽  
Gerardo Della Sala ◽  
...  

Porifera, commonly referred to as marine sponges, have stood out as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention along years. They are widespread in all continents, and several structurally unique compounds have been identified from species of this genus. Terpenes, mainly sesterterpenoids, represent the great majority of secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have shown a variety of biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial and anti-inflammatory activities, have been isolated and structurally characterized. This work brings an overview of Phorbas secondary metabolites reported since the first study published in 1993 until 2020, and their biological activities.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 667
Author(s):  
Alessia Caso ◽  
Fernanda Barbosa da Silva ◽  
Germana Esposito ◽  
Roberta Teta ◽  
Gerardo Della Sala ◽  
...  

Porifera, commonly referred to as marine sponges, are acknowledged as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention over the years. They are widespread in all continents, and several structurally unique compounds have been identified from this species. Terpenes, mainly sesterterpenoids, are the major secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have presented interesting biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial, and anti-inflammatory activities have been isolated and structurally characterized. This review provides an overview of almost 130 secondary metabolites from Phorbas sponges and their biological activities, and it covers the literature since the first study published in 1993 until November 2021, including approximately 60 records. The synthetic routes to the most interesting compounds are briefly outlined.


2015 ◽  
Vol 10 (7) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Maurice Ducret Awouafack ◽  
Pierre Tane ◽  
Michael Spiteller ◽  
Jacobus Nicolaas Eloff

Many flavonoids have so far been isolated as main secondary metabolites in plant species of the genus Eriosema (Fabaceae), which contains approximately 160 species. A total of 52 flavonoids including isoflavones, dihydroflavonols, flavonols, flavanones, dihydrochalcones, isoflavanone and their pyrano or glucoside derivatives were isolated and characterized from the five species of this genus investigated to date. Total synthesis and semi-synthesis (acetylation, methylation, hydrogenation, and cyclization) of some isolated flavonoids were reported. Due to several significant pharmacological properties (antimicrobial, cytotoxicity, anti-mycobacterial, antioxidant, antiviral, erectile-dysfunction, vasodilatory and hypoglycemic) of the isolated flavonoids and derivatives, more scientists should be interested in investigating Eriosema species. The present review is the first to document all flavonoids that have been reported from the genus Eriosema to date together with their synthetic and semi-synthetic derivatives, and their pharmacological properties. Dihydrochalcones, which are precursors of other classes of flavonoids, are very rare in natural sources and their isolation from Eriosema species may explain the large number of flavonoids found in this genus. It appears that isoflavone could be a marker for species in this genus. The 83 flavonoids (1–83) documented include 52 isolates, 31 semi-synthetic and 3 totally synthetic derivatives. Data were obtained from Google scholar, Pubmed, Scifinder, Sciencedirect, and Scopus. With 52 different flavonoids isolated from only 5 of the approximately 160 species it shows the remarkable chemical diversity of this genus. This compilation of the biological activities and chemical composition may renew the interest of pharmacologists and phytochemists in this genus.


2019 ◽  
Vol 16 (7) ◽  
pp. 653-688 ◽  
Author(s):  
Leena Kumari ◽  
Salahuddin ◽  
Avijit Mazumder ◽  
Daman Pandey ◽  
Mohammad Shahar Yar ◽  
...  

Heterocyclic compounds are well known for their different biological activity. The heterocyclic analogs are the building blocks for synthesis of the pharmaceutical active compounds in the organic chemistry. These derivatives show various type of biological activity like anticancer, antiinflammatory, anti-microbial, anti-convulsant, anti-malarial, anti-hypertensive, etc. From the last decade research showed that the quinoline analogs plays a vital role in the development of newer medicinal active compounds for treating various type of disease. Quinoline reported for their antiviral, anticancer, anti-microbial and anti-inflammatory activity. This review will summarize the various synthetic approaches for synthesis of quinoline derivatives and to check their biological activity. Derivatives of quinoline moiety plays very important role in the development of various types of newer drugs and it can be used as lead compounds for future investigation in the field of drug discovery process.


Sign in / Sign up

Export Citation Format

Share Document