Identification of the diterpenoid biosynthesis genes and their expression status in relation to oleoresin yield of masson pine

2021 ◽  
Vol 170 ◽  
pp. 113827
Author(s):  
Lina Mei ◽  
Youjin Yan ◽  
Zhengchun Li ◽  
Jiaxin Ran ◽  
Luonan Shen ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 332
Author(s):  
Min Li ◽  
Haoyun Wang ◽  
Xizhou Zhao ◽  
Zhongke Lu ◽  
Xueguang Sun ◽  
...  

Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.


2021 ◽  
Vol 43 (2) ◽  
pp. 917-931
Author(s):  
Jina Yun ◽  
Young Sok Ji ◽  
Geum Ha Jang ◽  
Sung Hee Lim ◽  
Se Hyung Kim ◽  
...  

Tet methylcytosine dioxygenase 2 (TET2) is one of the most frequently mutated genes in myelodysplastic syndrome (MDS). TET2 is known to involve a demethylation process, and the loss of TET2 is thought to cause DNA hypermethylation. Loss of TET2 function is known to be caused by genetic mutations and miRNA, such as miR-22. We analyzed 41 MDS patients receiving hypomethylating therapy (HMT) to assess whether TET2 mutation status and miR-22 expression status were associated with their clinical characteristics and treatment outcomes. Responsiveness to HMT was not affected by both TET2 mutation (odds ratio (OR) 0.900, p = 0.909) and high miR-22 expression (OR 1.548, p = 0.631). There was a tendency for TET2 mutation to be associated with lower-risk disease based on IPSS (Gamma = −0.674, p = 0.073), lower leukemic transformation (OR 0.170, p = 0.040) and longer survival (Hazard ratio 0.354, p = 0.059). Although high miR-22 expression also showed a similar tendency, this tendency was weaker than that of TET2 mutation. In summary, the loss of TET2 function, including both TET2 mutation and high miR-22 expression, was not a good biomarker for predicting the response to HMT but may be associated with lower-risk disease based on IPSS, lower leukemic transformation and longer survival.


2021 ◽  
Vol 297 ◽  
pp. 113306
Author(s):  
Renyong Shi ◽  
Hongwei Lai ◽  
Ni Ni ◽  
Jackson Nkoh Nkoh ◽  
Peng Guan ◽  
...  

2020 ◽  
Vol 477 ◽  
pp. 118503
Author(s):  
Cheng Deng ◽  
Shougong Zhang ◽  
Yuanchang Lu ◽  
Robert E. Froese ◽  
Xiaojun Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document