scholarly journals Regional evaluation of satellite-based methods for identifying leaf unfolding date

2021 ◽  
Vol 175 ◽  
pp. 88-98
Author(s):  
Ruoque Shen ◽  
Xiuzhi Chen ◽  
Lei Chen ◽  
Bin He ◽  
Wenping Yuan
2021 ◽  
Author(s):  
Haicheng Zhang ◽  
Pierre Regnier ◽  
Isabelle Chuine ◽  
Philippe Ciais ◽  
Wenping Yuan

Abstract Changes in winter and spring temperatures have been widely used to explain the diverse responses of spring phenology to climate change. However, our understanding of their respective roles remain incomplete. Using >300,000 in situ observations of leaf unfolding date (LUD) in Europe, we show that the advancement of LUD since 1950 is due both to accelerated spring thermal accumulation and changes in winter chilling which explain 61% and 39% of the LUD shifts, respectively. Winter warming did not substantially retard the releasing of bud dormancy, but increased the thermal requirement to reach leaf unfolding. The increase of thermal requirement and decreased efficiency of spring warming on accelerating thermal accumulation partly explained the temporally (1950s-2010s) decreasing response of LUD to warming. Our study stresses the need to better assess the antagonistic and heterogeneous effects of winter and spring warming on leaf phenology, which is key to projection of future vegetation-climate feedbacks.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447d-447
Author(s):  
Meriam Karlsson ◽  
Jeffrey Werner

Nine-week-old plants of Cyclamen persicum `Miracle Salmon' were transplanted into 10-cm pots and placed in growth chambers at 8, 12, 16, 20, or 24 °C. The irradiance was 10 mol/day per m2 during a 16-h day length. After 8 weeks, the temperature was changed to 16 °C for all plants. Expanded leaves (1 cm or larger) were counted at weekly intervals for each plant. The rate of leaf unfolding increased with temperature to 20 °C. The fastest rate at 20 °C was 0.34 ± 0.05 leaf/day. Flower buds were visible 55 ± 7 days from start of temperature treatments (118 days from seeding) for the plants grown at 12, 16, or 20 °C. Flower buds appeared 60 ± 6.9 days from initiation of treatments for plants grown at 24 °C and 93 ± 8.9 days for cyclamens grown at 8 °C. Although there was no significant difference in rate of flower bud appearance for cyclamens grown at 12, 16, or 20 °C, the number of leaves, flowers, and flower buds varied significantly among all temperature treatments. Leaf number at flowering increased from 38 ± 4.7 for plants at 12 °C to 77 ± 8.3 at 24 °C. Flowers and flower buds increased from 18 ± 2.9 to 52 ± 11.0 as temperature increased from 12 to 24 °C. Plants grown at 8 °C had on average 6 ± 2 visible flower buds, but no open flowers at termination of the study (128 days from start of treatments).


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruicheng Li ◽  
Tianxiang Luo ◽  
Thomas Mölg ◽  
Jingxue Zhao ◽  
Xiang Li ◽  
...  

1999 ◽  
Vol 47 (3) ◽  
pp. 147-152
Author(s):  
Shimon Lavee ◽  
Elizabeth Van Volkenburgh ◽  
Robert E. Cleland

The dependence of bean (Phaseolus vulgaris L. cv. Contender) leaf unfolding and expansion on light has been explored in intact and excised plants by varying the duration and timing of exposure to white light. Plants were grown for 10 days in dim red light (RL), and then some were excised. Both the intact and the excised plants were then exposed to varying white light (WL) treatments. In continuous WL, leaf unfolding began after 8 h, and was maximal after 36 h. For plants exposed to short WL treatments, as little as 2 h WL elicited partial unfolding when leaves were returned to RL and measured after 60 h. The relative rate of leaf elongation was most rapid during the first 2 h of WL and it rapidly decreased during the following 6–8 h. An 8 h exposure to WL followed by 52 h RL produced only a slightly lower leaf expansion than continuous WL for 32 h. Leaf elongation after 24 h constant WL irradiance was no longer light-dependent. The response of leaves on excised plants to WL was progressively less if treatment was delayed for 24 h after excision. In contrast, leaves on intact plants did not lose their ability to respond to light even after 48 h in the dark. The ability of leaves on intact or excised plants to elongate in RL decayed rapidly after day 10. These results indicate that light-stimulated leaf expansion in beans is mediated by some factors whose transport to the leaves is influenced by the presence of roots.


2020 ◽  
Author(s):  
Anikó Kern ◽  
Hrvoje Marjanović ◽  
Zoltán Barcza

<p>Spring leaf unfolding is a spectacular recurring event at the mid- and high latitudes that is associated with deciduous vegetation. Several lines of evidence indicate that the timing of spring green-up (i.e. the start of the season, SOS) changed in the past decades resulting in an earlier leaf unfolding - a phenomenon which is considered to be a major indicator of the effects of global warming. Contrary to the timing of the SOS, considerably less attention was paid to studying the dynamics of vegetation green-up, characterized by the leaf unfolding speed or the duration of spring green-up. The importance of studying the spring green-up dynamics lies in the fact that the duration of leaf development and timing of the onset of growth jointly determine the annual cycle of vegetation activity including carbon and energy balance, canopy conductance and evapotranspiration.</p><p>The aim of our research was to characterize the dynamics of leaf unfolding of deciduous broadleaf forests in the wider Carpathian Basin, located in Central Europe, using satellite remote sensing. The study was based on the Normalized Difference Vegetation Index (NDVI) time-series derived from the MOD09A1 official MODIS products during 2000–2019, the IGBP land cover classification dataset of the MCD12Q1 products, the CORINE 2012 (CLC2012) land cover dataset, the SRTM elevation dataset, and the FORESEE meteorological database. Our results clearly show that there is considerable interannual variability in the green-up duration of the deciduous broadleaf forest during 2000–2019. The last three years had, on average, the shortest (2018) and the two longest (2017 and 2019) recorded green-up durations in the region. Observed variability was partially attributed to the meteorological conditions, namely the extreme weather events occurring during the spring. We demonstrate that the meteorological conditions during the green-up period have a strong effect on the duration. The relationship between the SOS and the green-up duration reveals that the SOS also played an important role as a driver. Our results also reveal considerable elevation dependency both in the green-up duration and also in its correlation with SOS. Multiple linear regression models based on the SOS and the meteorological variables were also created to explain and predict the green-up duration.</p>


Sign in / Sign up

Export Citation Format

Share Document