scholarly journals Hepatic Sensing Loop Regulates PCSK9 Secretion in Response to Inhibitory Antibodies

2021 ◽  
Vol 78 (14) ◽  
pp. 1437-1449
Author(s):  
Carlota Oleaga ◽  
Michael D. Shapiro ◽  
Joshua Hay ◽  
Paul A. Mueller ◽  
Joshua Miles ◽  
...  
1979 ◽  
Author(s):  
H. P. Muller ◽  
N. H. van Tilburg ◽  
R. M. Bertina ◽  
J. J. Veltkamp

FVIII was separated into low molecular weight FVIII (LMW FVIII) and high molecular weight FVIII (HMW FVIII) by gel chromatography in the presence of high salt concentration or by high salt elution of LMW FVIII from FVIII bound to anti HMW FVII-Sepharose. Specific antibodies were raised in rabbits against HMW FVIII and LMW FVIII. After removal of the contaminating anti HMW activities the rabbit anti LMW FVIII was still able to neutralize the FVIII coagulant activity of normal plasma and of IMW FVIII with canparable efficiency and it had no effect on the VIIIR:WF of FVIII in normal plasma or in HMW FVIII. Anti LMW FVIII does not bind to HMW FVIII and does not precipitate FVIII as tested by counter immunoelectrophoresis. Rabbit anti HMW FVIII precipitates FVIII in normal plasma, inhibits VIIIR:WF activity, while it has no effect on the FVIII coagulant activity of LMW FVIII. The coagulant activity of FVIII in normal plasma is slightly inhibited by anti HMW FVIII presumably by non-specific effects (sterical hindrance). It is concluded that inhibitory antibodies against VIII:C raised in rabbits recognize antigenic structures only present on LMW FVIII. Antibodies against HMW FVIII raised in rabbits appears to recognize structures only present on HMW FVIII.


2002 ◽  
Vol 21 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Hui Zhao ◽  
Nobutaka Wakamiya ◽  
Yasuhiko Suzuki ◽  
Matthew T. Hamonko ◽  
Gregory L. Stahl

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 709-709
Author(s):  
Qizhen Shi ◽  
Erin L. Kuether ◽  
Jocelyn A. Schroeder ◽  
Crystal L. Perry ◽  
Scot A. Fahs ◽  
...  

Abstract Abstract 709 The important association between von Willebrand factor (VWF) and factor VIII (FVIII) has been investigated for decades, but the effect of VWF on FVIII inhibitors is still controversial. Studies have demonstrated that some anti-FVIII inhibitory antibodies inhibit VWF-FVIII interaction, while others rely on the presence of VWF to inhibit FVIII activities. The influence of VWF on the Bethesda assay, which is routinely used in the clinic to determine the titer of FVIII-neutralizing inhibitors, is still uncertain because the plasma from hemophilia A patients with inhibitors contains normal levels of VWF. To explore the effect of VWF on the reactivity of FVIII inhibitors, we immunized VWF and FVIII double knockout (VWFnullFVIIInull) mice with recombinant human B-domain deleted FVIII (rhFVIII) to induce anti-FVIII inhibitory antibody development. Inhibitory plasma was collected and the titer of inhibitors was determined by Bethesda assay. Murine plasma-derived VWF (from FVIIInull mice) or recombinant human VWF (rhVWF) was used to study the influence of VWF on inhibitor inactivation of FVIII activity (FVIII:C). The remaining FVIII:C after inactivation was determined by chromogenic assay. When inhibitory plasma was incubated with rhFVIII in the presence of 1 U/ml VWF, the residual FVIII activity recovered was higher than in the absence of VWF, resulting in 6.82 ± 1.12 (n = 27) fold lower apparent inhibitor titers. This protective effect is VWF dose dependent. The source of VWF (plasma-derived murine VWF vs. rhVWF) did not affect its protection of FVIII from inhibitor inactivation and VWF does not affect FVIII:C measured in the chromogenic assay in the absence of inhibitors. Interestingly, we found that inhibitor inactivation of FVIII:C in the absence of VWF occurred much faster than in its presence. When the usual 2 hr. incubation at 37°C was omitted from the Bethesda assay, adding rhVWF to rFVIII before mixing with inhibitory plasma resulted in 67.29 ± 20.18 (n = 5) fold lower apparent inhibitor titers than without added VWF. In contrast, if VWF was added to inhibitory plasma first and then mixed with rhFVIII, the inhibitor titers were only 11.04 ± 3.56 (n = 5) fold lower than without added VWF. These results indicate that rhFVIII present in a preformed VWF-FVIII complex is protected from inhibitory antibody inactivation. Conversely, when VWF and inhibitory plasma are added to rhFVIII at the same time, the VWF and inhibitors appear to compete to bind to rhFVIII. Inhibitor titers were lower than in the absence of VWF, but the protective effect is not as efficient as when VWF and rhFVIII were already associated with one another before encountering inhibitors. To confirm the protective effect of VWF on FVIII from inhibitor inactivation, we infused FVIIInull or VWFnullFVIIInull mice with inhibitory plasma and rhFVIII followed by a tail clip survival test. When rhFVIII was infused into FVIIInull mice to 2% followed by inhibitory plasma infusion, all mice with inhibitor titer of 2.5 BU/ml (n = 4) survived tail clipping, and 2 of 4 survived with either 25 BU/ml or 250 BU/ml. If inhibitory plasma was infused first followed by rhFVIII infusion, then only 2 of 6 mice with inhibitor titers of 2.5 BU/ml survived tail clip challenge and none survived with 25 BU/ml and 250 BU/ml. In the first set of mice the infused FVIII was able to form a protective complex with endogenous VWF before encountering inhibitors, while in the second set FVIII is exposed to VWF and pre-infused inhibitory antibodies at the same time, a competitive binding that appears to reduce VWF's protective effect. In contrast, when rhFVIII was infused into VWFnullFVIIInull mice followed by inhibitory plasma infusion, no animals (n = 4 for each group) survived tail clipping with inhibitor titers of 2.5 BU/ml or higher. In summary, our studies demonstrate that VWF exerts a protective effect, reducing inhibitor inactivation of FVIII, both in vitro and in vivo. While the role of VWF in stabilizing plasma FVIII in a milieu rich in proteases has been appreciated for decades, our results indicate that treatment utilizing products containing a complex of FVIII with VWF may be especially beneficial in hemophilia A patients with inhibitors. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 38 (1) ◽  
pp. 1-7 ◽  
Author(s):  
MASATO KUWAHATA ◽  
HIROYUKI IMANAKA ◽  
SYUJI TAKEI ◽  
KIMINORI MASUDA

PLoS ONE ◽  
2008 ◽  
Vol 3 (10) ◽  
pp. e3571 ◽  
Author(s):  
Fiona J. McCallum ◽  
Kristina E. M. Persson ◽  
Cleopatra K. Mugyenyi ◽  
Freya J. I. Fowkes ◽  
Julie A. Simpson ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2713-2721 ◽  
Author(s):  
Qizhen Shi ◽  
Scot A. Fahs ◽  
David A. Wilcox ◽  
Erin L. Kuether ◽  
Patricia A. Morateck ◽  
...  

Abstract Although genetic induction of factor VIII (FVIII) expression in platelets can restore hemostasis in hemophilia A mice, this approach has not been studied in the clinical setting of preexisting FVIII inhibitory antibodies to determine whether such antibodies would affect therapeutic engraftment. We generated a line of transgenic mice (2bF8) that express FVIII only in platelets using the platelet-specific αIIb promoter and bred this 2bF8 transgene into a FVIIInull background. Bone marrow (BM) from heterozygous 2bF8 transgenic (2bF8tg+/−) mice was transplanted into immunized FVIIInull mice after lethal or sublethal irradiation. After BM reconstitution, 85% of recipients survived tail clipping when the 1100-cGy (myeloablative) regimen was used, 85.7% of recipients survived when 660-cGy (nonmyeloablative) regimens were used, and 60% of recipients survived when the recipients were conditioned with 440 cGy. Our further studies showed that transplantation with 1% to 5% 2bF8tg+/− BM cells still improved hemostasis in hemophilia A mice with inhibitors. These results demonstrate that the presence of FVIII-specific immunity in recipients does not negate engraftment of 2bF8 genetically modified hematopoietic stem cells, and transplantation of these hematopoietic stem cells can efficiently restore hemostasis to hemophilic mice with preexisting inhibitory antibodies under either myeloablative or nonmyeloablative regimens.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Carrie F. Coggon ◽  
Andrew Jiang ◽  
Kelvin G. K. Goh ◽  
Ian R. Henderson ◽  
Mark A. Schembri ◽  
...  

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infection, which in some patients can develop into life-threatening urosepsis. Serum resistance is a key virulence trait of strains that cause urosepsis. Recently, we identified a novel method of serum resistance in patients with Pseudomonas aeruginosa lung infections, where patients possessed antibodies that inhibited complement-mediated killing (instead of protecting against infection). These inhibitory antibodies were of the IgG2 subtype, specific to the O-antigen component of lipopolysaccharide (LPS) and coated the bacterial surface, preventing bacterial lysis by complement. As this mechanism could apply to any Gram-negative bacterial infection, we hypothesized that inhibitory antibodies may represent an uncharacterized mechanism of serum resistance in UPEC. To test this, 45 urosepsis patients with paired blood culture UPEC isolates were screened for serum titers of IgG2 specific for their cognate strain’s LPS. Eleven patients had sufficiently high titers of the antibody to inhibit serum-mediated killing of UPEC isolates by pooled healthy control sera. Depletion of IgG or removal of O-antigen restored sensitivity of the isolates to the cognate patient serum. Importantly, the isolates from these 11 patients were more sensitive to killing by serum than isolates from patients with no inhibitory antibodies. This suggests the presence of inhibitory antibodies may have allowed these strains to infect the bloodstream. The high prevalence of patients with inhibitory antibodies (24%) suggests that this phenomenon is an important mechanism of UPEC serum resistance. LPS-specific inhibitory antibodies have now been identified against three Gram-negative pathogens that cause disparate diseases. IMPORTANCE Despite improvements in the early detection and management of sepsis, morbidity and mortality are still high. Infections of the urinary tract are one of the most frequent sources of sepsis with Escherichia coli the main causative agent. Serum resistance is vital for bacteria to infect the bloodstream. Here we report a novel method of serum resistance found in patients with UPEC-mediated sepsis. Antibodies in sera usually protect against infection, but here we found that 24% of patients expressed “inhibitory antibodies” capable of preventing serum-mediated killing of their infecting isolate. Our data suggest that these antibodies would allow otherwise serum-sensitive UPEC strains to cause sepsis. The high prevalence of patients with inhibitory antibodies in this cohort suggests that this is a widespread mechanism of resistance to complement-mediated killing in urosepsis patients, invoking the potential for the application of new methods to prevent and treat sepsis.


2010 ◽  
Vol 103 (01) ◽  
pp. 94-102 ◽  
Author(s):  
Masahiro Takeyama ◽  
Keiji Nogami ◽  
Tomoko Matsumoto ◽  
Tetsuhiro Soeda ◽  
Tsukasa Suzuki ◽  
...  

SummaryMany reports have identified factor (F)VIII inhibitory antibodies with epitopes located in all subunits of the FVIII molecule. Antibodies that promote FVIII activity do not appear to have been reported. We characterised, for the first time, a unique anti-FVIII monoclonal antibody, mAb216, that enhanced FVIII coagulant activity. The mAb216 shortened the activated partial thromboplastin time and specifically increased FVIII activity by ~1.5-fold dose-dependently. FXa generation and thrombin generation were similarly increased by ~1.4- and ~2.5-fold, respectively. An A2 epitope, not overlapping the common A2 epitope, was identified and the antibody was shown to enhance thrombin (and FXa)-catalysed activation of FVIII by modestly accelerating cleavage at Arg372. The presence of mAb216 mediated an ~1.5-fold decrease in Km for the FVIII-thrombin interaction. Enhanced FVIII activity was evident to an equal degree, even the presence of anti-FVIII neutralising antibodies with epitopes in each subunit. In addition, mAb216 depressed the rates of heat-denatured loss of FVIII activity and FVIIIa decay by 2 to ~2.5-fold. We have developed an anti-A2, FVIII mAb216 that augmented procoagulant activity. This enhancing effect could be attributed to an increase in thrombin-induced activation of FVIII, mediated by cleavage at Arg372 and a tighter interaction of thrombin with the A2 domain. The findings may cast new light on new principles for improving the treatment of haemophilia A patients.


Sign in / Sign up

Export Citation Format

Share Document