Osteopontin (OPN) Plays a Critical Role in Respiratory Syncytial Virus (RSV) Infection

2015 ◽  
Vol 135 (2) ◽  
pp. AB109
Author(s):  
Viviana P. Sampayo-Escobar ◽  
Terianne M. Wong ◽  
Sandhya Boyapalle ◽  
Raminder Bedi ◽  
Subhra Mohapatra ◽  
...  
Author(s):  
María Pía Holgado ◽  
Silvina Raiden ◽  
Inés Sananez ◽  
Vanesa Seery ◽  
Leonardo De Lillo ◽  
...  

BackgroundMost patients with respiratory syncytial virus (RSV) infection requiring hospitalization have no risk factors for severe disease. Genetic variation in the receptor for the Fc portion of IgG (FcγR) determines their affinity for IgG subclasses driving innate and adaptive antiviral immunity. We investigated the relationship between FcγRIIa-H131R polymorphism and RSV disease.MethodsBlood samples were collected from 182 infants ≤24-month-old (50 uninfected, 114 RSV-infected with moderate course and 18 suffering severe disease). FcγRIIa-H131R SNP genotypic frequencies (HH, HR, RR) and anti-RSV IgG1, IgG2 and IgG3 levels were studied.ResultsGenotypic frequencies for FcγRIIa-H131R SNP were comparable between uninfected and RSV-infected infants. In contrast, we found a significant higher frequency of HH genotype in severe RSV-infected children compared to moderate patients. Among severe group, HH infants presented more factors associated to severity than HR or RR patients did. Furthermore, compared to moderate RSV-infected infants, severe patients showed higher levels of anti-RSV IgG1 and IgG3.ConclusionsWe found an association between an FcγRIIa (H131) polymorphism and severe RSV disease, which points towards a critical role for interactions between FcγRs and immune complexes in RSV pathogenesis. This genetic factor could also predict the worse outcome and identify those infants at risk during hospitalization.


2010 ◽  
Vol 84 (14) ◽  
pp. 7267-7277 ◽  
Author(s):  
Fabrice Yoboua ◽  
Alexis Martel ◽  
Annick Duval ◽  
Espérance Mukawera ◽  
Nathalie Grandvaux

ABSTRACT Respiratory syncytial virus (RSV) is the etiological agent of acute respiratory diseases, such as bronchiolitis and pneumonia. The exacerbated production of proinflammatory cytokines and chemokines in the airways in response to RSV is an important pillar in the development of these pathologies. As such, a keen understanding of the mechanisms that modulate the inflammatory response during RSV infection is of pivotal importance to developing effective treatment. The NF-κB transcription factor is a major regulator of proinflammatory cytokine and chemokine genes. However, RSV-mediated activation of NF-κB is far from characterized. We recently demonstrated that aside from the well-characterized IκBα phosphorylation and degradation, the phosphorylation of p65 at Ser536 is an essential event regulating the RSV-mediated NF-κB-dependent promoter transactivation. In the present study, using small interfering RNA and pharmacological inhibitors, we now demonstrate that RSV sensing by the RIG-I cytoplasmic receptor triggers a signaling cascade involving the MAVS and TRAF6 adaptors that ultimately leads to p65ser536 phosphorylation by the IKKβ kinase. In a previous study, we highlighted a critical role of the NOX2-containing NADPH oxidase enzyme as an upstream regulator of both the IκBαSer32 and p65Ser536 in human airway epithelial cells. Here, we demonstrate that inhibition of NOX2 significantly decreases IKKβ activation. Taken together, our data identify a new RIG-I/MAVS/TRAF6/IKKβ/p65Ser536 pathway placed under the control of NOX2, thus characterizing a novel regulatory pathway involved in NF-κB-driven proinflammatory response in the context of RSV infection.


2012 ◽  
Vol 31 (6) ◽  
pp. 357-368 ◽  
Author(s):  
Marianne Bracht ◽  
Debbie Basevitz ◽  
Marilyn Cranis ◽  
Rose Paulley ◽  
Bosco Paes

Respiratory syncytial virus (RSV) infections are prevalent globally and can cause substantial morbidity in infants and young children. The virus is easily transmitted by direct hand-to-hand contact and can lead to serious respiratory disease and hospitalization, particularly in premature infants and children with certain medical conditions. Educating families with young children, especially those in remote rural regions, regarding the potential adverse health outcomes of RSV infection and measures to reduce the risk of transmitting or acquiring RSV has been a key focus of the health care system in Canada. Geographic, cultural, and socioeconomic factors present formidable challenges to the execution of this endeavor. Therefore, it is critical to develop and systematically implement effective educational programs for both families and health care providers. In Canada, nurses play a critical role in education and counseling. In this review, we share our perspectives and suggest empirical practices that may be applicable worldwide.


2004 ◽  
Vol 78 (6) ◽  
pp. 3014-3023 ◽  
Author(s):  
John A. Rutigliano ◽  
Teresa R. Johnson ◽  
Tonya N. Hollinger ◽  
Julie E. Fischer ◽  
Sandra Aung ◽  
...  

ABSTRACT Cytotoxic T lymphocytes (CTLs) play an important role in the immune response against respiratory syncytial virus (RSV) infection. The cell surface molecule lymphocyte function-associated antigen 1 (LFA-1) is an important contributor to CTL activation, CTL-mediated direct cell lysis, and lymphocyte migration. In an attempt to determine the role of LFA-1 during RSV infection, we treated BALB/c mice with monoclonal antibodies to LFA-1 at days −1, +1, and +4 relative to primary RSV infection. Anti-LFA-1 treatment during primary RSV infection led to reduced illness and delayed clearance of virus-infected cells. CTLs from RSV-infected mice that were treated with anti-LFA-1 exhibited diminished cytolytic activity and reduced gamma interferon production. In addition, studies with BrdU (5-bromo-2′-deoxyuridine)- and CFSE [5-(and 6)-carboxyfluorescein diacetate succinimidyl ester]-labeled lymphocytes showed that anti-LFA-1 treatment led to delayed proliferation during RSV infection. These results indicate that LFA-1 plays a critical role in the initiation of the immune response to RSV infection by facilitating CTL activation. These results may prove useful in the development of new therapies to combat RSV infection or other inflammatory diseases.


2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Author(s):  
Ian Mitchell ◽  
Abby Li ◽  
Candice L. Bjornson ◽  
Krista L. Lanctot ◽  
Bosco A. Paes ◽  
...  

Objective This study aimed to evaluate palivizumab (PVZ) use, trends in indications, and outcomes of respiratory illness hospitalizations (RIH) and respiratory syncytial virus hospitalizations (RSVH). Study Design It involves a large, Canadian prospective (2005–2017) observational multicenter study of children at high risk for RSV infection. Results A total of 25,003 infants (56.3% male) were enrolled at 32 sites; 109,579 PVZ injections were administered. Indications included: prematurity (63.3%); “miscellaneous” (17.8%); hemodynamically significant congenital heart disease (10.5%); bronchopulmonary dysplasia/chronic lung disease (8.4%). The “miscellaneous” group increased over time (4.4% in 2005–2006 to 22.5% in 2016–2017) and included: trisomy 21, airway anomalies, pulmonary disorders, cystic fibrosis, neurological impairments, immunocompromised, cardiac aged >2 years, multiple conditions, and a residual “unclassified” group. Adherence measured by expected versus actual doses plus correct interdose interval was 64.7%. A total of 2,054 RIH occurred (6.9%); 198 (9.6%) required intubation. Three hundred thirty-seven hospitalized children were RSV-positive (overall RSVH 1.6%). Risk factors for RSVH included having siblings, attending daycare, family history of atopy, smoking exposure, and crowded household. Infants with 5 risk factors were 9.0 times (95% CI or confidence interval 4.4–18.2; p < 0.0005) more likely to have RSVH than infants without risk factors. Three adverse events occurred; none were fatal. Conclusion Results are relevant to both clinicians and decision-makers. We confirmed the safety of PVZ. Use of PVZ increased steadily for children with miscellaneous conditions and medical complexity. Medical and social factors pose a risk for severe RIH and RSVH with accompanying burden of illness. A vaccine that protects against RSV is urgently required. Key Points


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abate Yeshidinber Weldetsadik ◽  
Frank Riedel

Abstract Background Respiratory Syncytial Virus (RSV) is the commonest cause of acute lower respiratory infections (ALRI) in infants. However, the burden of RSV is unknown in Ethiopia. We aimed to determine the prevalence, seasonality and predictors of RSV infection in young infants with ALRI for the first time in Ethiopia. Methods We performed RSV immuno-chromatographic assay from nasopharyngeal swabs of infants, 29 days to 6 months of age. We included the first 10 eligible infants in each month from June 2018 to May 2019 admitted in a tertiary pediatric center. Clinical, laboratory and imaging data were also collected, and chi-square test and regression were used to assess associated factors with RSV infection. Results Among a total of 117 study children, 65% were male and mean age was 3 months. Bronchiolitis was the commonest diagnosis (49%). RSV was isolated from 26 subjects (22.2%) of all ALRI, 37% of bronchiolitis and 11% of pneumonia patients. Although RSV infection occurred year round, highest rate extended from June to November. No clinical or laboratory parameter predicted RSV infection and only rainy season (Adjusted Odds Ratio (AOR) 10.46 [95%. C.I. 1.95, 56.18]) was independent predictor of RSV infection. Conclusions RSV was isolated in a fifth of young infants with severe ALRI, mostly in the rainy season. Diagnosis of RSV infection in our setting require specific tests as no clinical parameter predicted RSV infection. Since RSV caused less than a quarter of ALRI in our setting, the other causes should be looked for in future studies.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 548
Author(s):  
Kiramage Chathuranga ◽  
Asela Weerawardhana ◽  
Niranjan Dodantenna ◽  
Lakmal Ranathunga ◽  
Won-Kyung Cho ◽  
...  

Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.


Sign in / Sign up

Export Citation Format

Share Document