The influence of electric charge on minimum particle scavenging efficiency particle size during below-cloud scavenging processes

2014 ◽  
Vol 67 ◽  
pp. 177-187 ◽  
Author(s):  
Soo Ya Bae ◽  
Chang H. Jung ◽  
Yong Pyo Kim
2017 ◽  
Author(s):  
Guohua Zhang ◽  
Qinhao Lin ◽  
Long Peng ◽  
Xinhui Bi ◽  
Duohong Chen ◽  
...  

Abstract. In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles in a size range of 0.1–1.6 µm and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and were activated into cloud droplets to the same extent as all the measured particles. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were activated less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Since limited information on BC-containing particles in the free troposphere is available, the results also provide an important reference for the representation of BC concentrations, properties, and climate impacts in modeling studies.


2017 ◽  
Vol 17 (24) ◽  
pp. 14975-14985 ◽  
Author(s):  
Guohua Zhang ◽  
Qinhao Lin ◽  
Long Peng ◽  
Xinhui Bi ◽  
Duohong Chen ◽  
...  

Abstract. In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05–0.45) to a similar (or slightly lower) extent as all the measured particles (0.07–0.6) over the measured size range of 0.1–1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.


2017 ◽  
Vol 17 (12) ◽  
pp. 7459-7479 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Cenlin He ◽  
Xin Wang ◽  
Jianping Huang

Abstract. We systematically investigate the effects of Wegener–Bergeron–Findeisen process (hereafter WBF) on black carbon (BC) scavenging efficiency, surface BCair, deposition flux, concentration in snow (BCsnow, ng g−1), and washout ratio using a global 3-D chemical transport model (GEOS-Chem). We differentiate riming- versus WBF-dominated in-cloud scavenging based on liquid water content (LWC) and temperature. Specifically, we implement an implied WBF parameterization using either temperature or ice mass fraction (IMF) in mixed-phase clouds based on field measurements. We find that at Jungfraujoch, Switzerland, and Abisko, Sweden, where WBF dominates in-cloud scavenging, including the WBF effect strongly reduces the discrepancies of simulated BC scavenging efficiency and washout ratio against observations (from a factor of 3 to 10 % and from a factor of 4–5 to a factor of 2). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. Our model results show that including the WBF effect lowers global BC scavenging efficiency, with a higher reduction at higher latitudes (8 % in the tropics and up to 76 % in the Arctic). The resulting annual mean BCair increases by up to 156 % at high altitudes and at northern high latitudes because of lower temperature and higher IMF. Overall, WBF halves the model–observation discrepancy (from −65 to −30 %) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29–0.35 mg m−2 yr−1, which partially explains the gap between observed and previous model-simulated BC burdens over land. In addition, WBF significantly increases BC lifetime from 5.7 to  ∼  8 days. Additionally, WBF results in a significant redistribution of BC deposition in source and remote regions. Specifically, it lowers BC wet deposition (by 37–63 % at northern mid-latitudes and by 21–29 % in the Arctic), while it increases dry deposition (by 3–16 % at mid-latitudes and by 81–159 % in the Arctic). The resulting total BC deposition is lower at mid-latitudes (by 12–34 %) but higher in the Arctic (by 2–29 %). We find that WBF decreases BCsnow at mid-latitudes (by  ∼  15 %) but increases it in the Arctic (by 26 %) while improving model comparisons with observations. In addition, WBF dramatically reduces the model–observation discrepancy of washout ratios in winter (from a factor of 16 to 4). The remaining discrepancies in BCair, BCsnow and BC washout ratios suggest that in-cloud removal in mixed-phased clouds is likely still excessive over land.


Author(s):  
Z. Maalick ◽  
H. Korhonen ◽  
H. Kokkola ◽  
T. Kühn ◽  
S. Romakkaniemi

We study the dispersion of sea salt particles from artificially injected sea spray at a cloud-resolving scale. Understanding of how different aerosol processes affect particle dispersion is crucial when designing emission sources for marine cloud brightening. Compared with previous studies, we include for the first time an explicit treatment of aerosol water, which takes into account condensation, evaporation and their effect on ambient temperature. This enables us to capture the negative buoyancy caused by water evaporation from aerosols. Additionally, we use a higher model resolution to capture aerosol loss through coagulation near the source point. We find that, with a seawater flux of 15 kg s −1 , the cooling due to evaporation can be as much as 1.4 K, causing a delay in particle dispersion of 10–20 min. This delay enhances particle scavenging by a factor of 1.14 compared with simulations without aerosol water. We further show that both cooling and particle dispersion depend on the model resolution, with a maximum particle scavenging efficiency of 20% within 5 h after emission at maximum resolution of 50 m. Based on these results, we suggest further regional high-resolution studies which model several injection periods over several weeks.


2020 ◽  
Author(s):  
Innocent Kudzotsa ◽  
Harri Kokkola ◽  
Juha Tonttila ◽  
Tomi Raatikainen ◽  
Sami Romakkaniemi

Abstract. We investigated the effect of inorganic semi-volatile compounds (SVC) HNO3 and NH3 on the cloud condensation nuclei (CCN) activity of aerosols and the subsequent changes in cloud properties. This was done by upgrading our state-of-the-art large eddy simulator – UCLALES-SALSA, which was modified to include the treatment of the condensation and dissolution of SVCs onto pre-existing aerosols and cloud droplets. The immediate effect of these SVCs on aerosols was to shift the aerosol dry size distribution towards larger sizes as a result of their co-condensation with water vapour. Since the dry size of a CCN is the dominant factor determining its CCN activity, a marked increase in cloud droplet number concentration(similar to the Twomey effect) was noted both in zero- and three-dimensional simulations when gas-phase concentrations of VCs were increased. As the overall amount of precipitation was small in the simulated stratocumulus case, the increase in droplet concentration led to a smaller mean size and reduced drizzle. Within clouds, the smaller droplets contain a relatively higher amount of nitrate than the larger ones, and as the drizzle is mainly formed through large droplets, the ammonium nitrate in-cloud scavenging is weaker than would be estimated based on average droplet composition. The model was also able to simulate the relatively more acidic interstitial particles than cloud droplets. However, below the cloud, condensation of gases on drizzling droplets quickly increases their overall wet scavenging efficiency compared to sulphate.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 175 ◽  
Author(s):  
Yuxiang Yang ◽  
Yuzhen Fu ◽  
Qinhao Lin ◽  
Feng Jiang ◽  
Xiufeng Lian ◽  
...  

Black carbon (BC) aerosol is of great importance not only for its strong potential in heating air and impacts on cloud, but also because of its hazards to human health. Wet deposition is regarded as the main sink of BC, constraining its lifetime and thus its impact on the environment and climate. However, substantial controversial and ambiguous issues in the wet scavenging processes of BC are apparent in current studies. Despite of its significance, there are only a small number of field studies that have investigated the incorporation of BC-containing particles into cloud droplets and influencing factors, in particular, the in-cloud scavenging, because it was simplicitly considered in many studies (as part of total wet scavenging). The mass scavenging efficiencies (MSEs) of BC were observed to be varied over the world, and the influencing factors were attributed to physical and chemical properties (e.g., size and chemical compositions) and meteorological conditions (cloud water content, temperature, etc.). In this review, we summarized the MSEs and potential factors that influence the in-cloud and below-cloud scavenging of BC. In general, MSEs of BC are lower at low-altitude regions (urban, suburban, and rural sites) and increase with the rising altitude, which serves as additional evidence that atmospheric aging plays an important role in the chemical modification of BC. Herein, higher altitude sites are more representative of free-tropospheric conditions, where BC is usually more aged. Despite of increasing knowledge of BC–cloud interaction, there are still challenges that need to be addressed to gain a better understanding of the wet scavenging of BC. We recommend that more comprehensive methods should be further estimated to obtain high time-resolved scavenging efficiency (SE) of BC, and to distinguish the impact of in-cloud and below-cloud scavenging on BC mass concentration, which is expected to be useful for constraining the gap between field observation and modeling simulation results.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Sign in / Sign up

Export Citation Format

Share Document