Significantly enhanced dielectric constant and breakdown strength in crystalline@amorphous core-shell structured SrTiO3 nanocomposite thick films

2018 ◽  
Vol 762 ◽  
pp. 370-377 ◽  
Author(s):  
Shengqiang Xiao ◽  
Manwen Yao ◽  
Wenbin Gao ◽  
Zhen Su ◽  
Xi Yao
2021 ◽  
pp. 095400832199352
Author(s):  
Wei Deng ◽  
Guanguan Ren ◽  
Wenqi Wang ◽  
Weiwei Cui ◽  
Wenjun Luo

Polymer composites with high dielectric constant and thermal stability have shown great potential applications in the fields relating to the energy storage. Herein, core-shell structured polyimide@BaTiO3 (PI@BT) nanoparticles were fabricated via in-situ polymerization of poly(amic acid) (PAA) and the following thermal imidization, then utilized as fillers to prepare PI composites. Increased dielectric constant with suppressed dielectric loss, and enhanced energy density as well as heat resistance were simultaneously realized due to the presence of PI shell between BT nanoparticles and PI matrix. The dielectric constant of PI@BT/PI composites with 55 wt% fillers increased to 15.0 at 100 Hz, while the dielectric loss kept at low value of 0.0034, companied by a high energy density of 1.32 J·cm−3, which was 2.09 times higher than the pristine PI. Moreover, the temperature at 10 wt% weight loss reached 619°C, demonstrating the excellent thermostability of PI@BT/PI composites. In addition, PI@BT/PI composites exhibited improved breakdown strength and toughness as compared with the BT/PI composites due to the well dispersion of PI@BT nanofillers and the improved interfacial interactions between nanofillers and polymer matrix. These results provide useful information for the structural design of high-temperature dielectric materials.


Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


2012 ◽  
Vol 2012 (1) ◽  
pp. 000609-000616
Author(s):  
Beihai Ma ◽  
Manoj Narayanan ◽  
Shanshan Liu ◽  
Sheng Tong ◽  
U. (Balu) Balachandran

Ceramic film capacitors with high dielectric constant and high breakdown strength are promising for use in advanced power electronics, which would offer higher performance, improved reliability, and enhanced volumetric and gravimetric efficiencies. We have grown lead lanthanum zirconate titanate (PLZT) on nickel foils and platinized silicon (PtSi) substrates by chemical solution deposition. A buffer layer of LaNiO3 (LNO) was deposited on the nickel foils prior to the deposition of PLZT. We measured the following electrical properties for PLZT films grown on LNO buffered Ni and PtSi substrates, respectively: remanent polarization, ≈25.4 μC/cm2 and ≈10.1 μC/cm2; coercive electric field, ≈23.8 kV/cm and ≈27.9 kV/cm; dielectric constant at room temperature, ≈1300 and ≈1350; and dielectric loss at room temperature, ≈0.06 and ≈0.05. Weibull analysis determined the mean breakdown strength to be 2.6 MV/cm and 1.5 MV/cm for PLZT films grown on LNO buffered Ni and PtSi substrates, respectively. Residual stress analysis by x-ray diffraction revealed compressive stress of ≈-520 MPa in the ≈2-μm-thick PLZT grown on LNO buffered Ni foil, but a tensile stress of ≈210 MPa in the ≈2-μm-thick PLZT grown on PtSi substrates.


2014 ◽  
Vol 908 ◽  
pp. 63-66
Author(s):  
Ya Jun Wang ◽  
Xiao Juan Wu ◽  
Chang Gen Feng

Polyimide (PI) was chosen as the matrix of the composite, barium titanate/polyimide (BT/PI) nanocomposite films were prepared by in situ polymerization. In order to improve the dispersion and the physical-chemical properties of BT surface, barium titanate was modified by Al2O3coating and modified BT/PI nanocomposite films were prepared. The prepared modified BT was characterized by X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), and the dielectric properties of the composites were characterized in detail. It was shown that surface modification with Al2O3is the chemical process and there were new substances forming. When BT was modified by 10 wt% Al2O3, the dielectric constant of the composite film was 18.96 (103Hz), the loss tangent 0.005, breakdown strength 70 MV·m-1, energy storage density 0.41 J·cm-3. The dielectric constant of BT modified by Al2O3is decreased while the dielectric strength of the modified BT/PI composite film is increased.


2018 ◽  
Vol 11 (01) ◽  
pp. 1850010 ◽  
Author(s):  
Yuqiang Guo ◽  
Yifei Wang ◽  
Yaxuan Ren ◽  
Mingzhu Fu ◽  
Hongmei Ma ◽  
...  

Based on the percolation threshold theory of conductive-dielectric composites, the dielectric constant can be improved more by adding a certain mass fraction of conductive particle into polymer matrix. However, the dielectric loss increases with the increasing mass fraction of conductive particle. In this paper, conductive Polyaniline (PANI) with different particle sizes is utilized to illustrate that reducing particle size can improve the dielectric properties. The dielectric constant is increased from 319 to 540, and dielectric loss is decreased from 2.34 to 0.85 when PANI with smaller particle size is used. Moreover, PANI coated with an insulating surfactant layer can further improve the dielectric properties, the experimental results show that the dielectric constant of the composite could be more than 1000, while the dielectric loss is 0.35 at 1[Formula: see text]KHz.


Sign in / Sign up

Export Citation Format

Share Document