Effects of nanosized TiCp dispersion on the high-temperature tensile strength and ductility of in situ TiCp/Al-Cu-Mg-Si nanocomposites

2019 ◽  
Vol 774 ◽  
pp. 425-433 ◽  
Author(s):  
Yu-Yang Gao ◽  
Feng Qiu ◽  
Run Geng ◽  
Jian-Ge Chu ◽  
Qing-Long Zhao ◽  
...  
1981 ◽  
Vol 12 ◽  
Author(s):  
A. Kolb-Telieps ◽  
B.L. Mordike ◽  
M. Mrowiec

ABSTRACTCu-Nb composite wires were produced from powder, electrolytically coated with tin and annealed to convert the Nb fibres to Nb 3Sn. The content was varied between 10 wt % and 40 wt %. The superconducting properties of the wires were determined. The mechanical properties, tensile strength, yield strength and ductility were measured as a function of volume fraction and deformation over a wide temperature range. The results are compared with those for wires produced by different techniques.


2021 ◽  
Vol 904 ◽  
pp. 188-195
Author(s):  
Hua Qiong Wang ◽  
Li Li Zhang ◽  
Da Cheng Jiao ◽  
Yan Ru Wang ◽  
Zeng Hua Gao

The tensile properties of quartz fiber fabric-reinforced resin composites at high temperature were studied. The effects of specimen type and dimension, temperature loading procedure, holding time and loading rate on the tensile properties of the composites at high temperatures were analyzed through series of comparative experiments, the tensile test parameters were determined. Chinese national standard for high-temperature tensile property testing of the composites was compiled based on the data collected. According to the established standard, the tensile testing at 500°C was carried out. Compared with the tensile properties at room temperature, the tensile strength and tensile modulus of the composite at high temperature decreases significantly, with the tensile strength decreasing by about 42.32% and the tensile modulus decreasing by about 24.18%. This is mainly due to the high temperature which causes part of the resin matrix to pyrolyze and detach from around the fiber, thus losing the integrity of the material. In addition, this national standard for high-temperature tensile properties has some general applicability to different types of fiber-reinforced resin composites.


1999 ◽  
Vol 14 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Jian Zhang ◽  
Yu-qing Wang ◽  
Bing Yang ◽  
Ben-lian Zhou

Al/Mg2Si composites were in situ fabricated by the usual die-casting technique, and effects of the Si contents in the composites on microstructures and tensile strengths were investigated. Experimental results show that extra Si contents in Al/Mg2Si composites induce a ductile matrix and a uniform distribution of in situ particles. The refined microstructures lead to an obvious increase in both strength and ductility of the metal matrix composites (MMCs). The effects of extra Si on both the solidification process and fracture characteristics of the Al/Mg2Si composites were analyzed.


2014 ◽  
Vol 900 ◽  
pp. 141-145 ◽  
Author(s):  
Can Feng Fang ◽  
Guang Xu Liu ◽  
Ling Gang Meng ◽  
Xing Guo Zhang

The effects of in-situ TiB2 particle fabricated from Al-Ti-B system via the self-propagating high-temperature synthesis (SHS) reaction technology on microstructure and mechanical properties of Mg-Sn-Zn-Al alloy were investigated. The results indicate that the size of the Mg2Sn and α-Mg+Mg32(Al,Zn)49 phase becomes coarser with the increasing content of Al-Ti-B preform, meanwhile the amount of eutectic α-Mg+Mg32(Al,Zn)49 phase increases too. The addition of Al-Ti-B is favorable toward promoting the strength of composites, but deteriorates elongation. The resulting as-extruded composite material with 4 wt.% Al-Ti-B preform exhibits good overall mechanical properties with an ultimate tensile strength of 291 MPa and an elongation over 2 %.


Refractories ◽  
1990 ◽  
Vol 31 (7-8) ◽  
pp. 446-448
Author(s):  
O. V. Bakunov ◽  
L. B. Borovkova ◽  
T. A. Melekhina ◽  
E. P. Pakhomov

2012 ◽  
Vol 545 ◽  
pp. 209-213 ◽  
Author(s):  
H.W. Wang ◽  
J.Q. Qi ◽  
C.M. Zou ◽  
D.D. Zhu ◽  
Z.J. Wei

Sign in / Sign up

Export Citation Format

Share Document