Interaction between slip and {101¯2} tensile twinning in Zr alloy: Quasi in situ electron backscatter diffraction study under uniaxial tensile test

2019 ◽  
Vol 782 ◽  
pp. 659-666 ◽  
Author(s):  
H.L. Yang ◽  
S. Kano ◽  
L.J. Chai ◽  
J.J. Shen ◽  
Z.S. Zhao ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
Behnam Shakerifard ◽  
Jesus Galan Lopez ◽  
Leo A. I. Kestens

The third generation of advanced high strength steels shows promising properties for automotive applications. The macroscopic mechanical response of this generation can be further improved by a better understanding of failure mechanisms on the microstructural level and micro-mechanical behavior under various loading conditions. In the current study, the microstructure of a multiphase low silicon bainitic steel is characterized with a scanning electron microscope (SEM) equipped with an electron backscatter diffraction detector. A uniaxial tensile test is carried out on the bainitic steel with martensite and carbides as second phase constituents. An extensive image processing on SEM micrographs is conducted in order to quantify the void evolution during plastic deformation. Later, a new post-mortem electron backscatter diffraction-based method is introduced to address the correlation between crystallographic orientation and damage initiation. In this multiphase steel, particular crystallographic orientation components were observed to be highly susceptible to micro-void formation. It is shown that stress concentration around voids is rather relaxed by void growth than local plasticity. Therefore, this post-mortem method can be used as a validation tool together with a crystal plasticity-based hardening model in order to predict the susceptible crystallographic orientations to damage nucleation.


Microscopy ◽  
2020 ◽  
Author(s):  
Kaneaki Tsuzazki ◽  
Motomichi Koyama ◽  
Ryosuke Sasaki ◽  
Keiichiro Nakafuji ◽  
Kazushi Oie ◽  
...  

Abstract Microstructural changes during the martensitic transformation from face-centred cubic (FCC) to body-centred cubic (BCC) in an Fe-31Ni alloy were observed by scanning electron microscopy (SEM) with a newly developed Peltier stage available at temperatures to  −75°C. Electron channelling contrast imaging (ECCI) was utilized for the in situ observation during cooling. Electron backscatter diffraction analysis at ambient temperature (20°C) after the transformation was performed for the crystallographic characterization. A uniform dislocation slip in the FCC matrix associated with the transformation was detected at −57°C. Gradual growth of a BCC martensite was recognized upon cooling from −57°C to −63°C.


2007 ◽  
Vol 13 (S02) ◽  
Author(s):  
D Prior ◽  
M Bestmann ◽  
S Piazolo ◽  
NC Seaton ◽  
DJ Tatham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document