P3-073: NAD+ metabolism, and oxidative stress in the brain of aging Wistar rats: Is there a link?

2012 ◽  
Vol 8 (4S_Part_13) ◽  
pp. P478-P478
Author(s):  
Nady Braidy ◽  
Anne Poljak ◽  
Tharusha Jayasena ◽  
Gilles Guillemin ◽  
George Smythe ◽  
...  
1989 ◽  
Vol 263 (1) ◽  
pp. 273-277 ◽  
Author(s):  
A M Adamo ◽  
S F Llesuy ◽  
J M Pasquini ◽  
A Boveris

Newborn Wistar rats were made hyperthyroid by injection of tri-iodothyronine and assayed for survival, brain oxygen uptake, brain chemiluminescence and activity of antioxidant enzymes. Brain chemiluminescence was measured (1) by removing the parietal bones or (2) through the translucid parietal bones. Control animals showed a brain chemiluminescence of 130 +/- 12 c.p.s./cm2 and 99 +/- 10 c.p.s./cm2 for procedures (1) and (2) respectively. Hyperthyroid rats showed increases in the spontaneous brain photoemission of 46 and 70% compared with controls, measured by procedures 1 and 2 respectively. The hyperthyroid state did not modify the oxygen-dependent chemiluminescence of brain homogenates. The hyperthyroid animals showed a 30% increase in the oxygen uptake of brain slices and a dramatic shortening of life-span to about 16 weeks. Superoxide dismutase (the Cu-Zn enzyme), catalase and Se-dependent glutathione peroxidase activities of brain homogenates were increased by 18, 36 and 30% respectively in the hyperthyroid animals. Isolated brain mitochondria produced 0.18-0.20 nmol of H2O2/min per mg of protein in state 4 in the presence of succinate as substrate. No difference was observed between control and hyperthyroid animals. It is concluded that hyperthyroidism leads to hypermetabolism and oxidative stress in the brain. The increased levels of oxygen and peroxyl radicals may contribute to premature ageing in these animals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Dupuy ◽  
Pierre Castelnau ◽  
Sylvie Mavel ◽  
Antoine Lefevre ◽  
Lydie Nadal-Desbarats ◽  
...  

AbstractAttention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. The neurobiological mechanisms underlying ADHD are still poorly understood, and its diagnosis remains difficult due to its heterogeneity. Metabolomics is a recent strategy for the holistic exploration of metabolism and is well suited for investigating the pathophysiology of diseases and finding molecular biomarkers. A few clinical metabolomic studies have been performed on peripheral samples from ADHD patients but are limited by their access to the brain. Here, we investigated the brain, blood, and urine metabolomes of SHR/NCrl vs WKY/NHsd rats to better understand the neurobiology and to find potential peripheral biomarkers underlying the ADHD-like phenotype of this animal model. We showed that SHR/NCrl rats can be differentiated from controls based on their brain, blood, and urine metabolomes. In the brain, SHR/NCrl rats displayed modifications in metabolic pathways related to energy metabolism and oxidative stress further supporting their importance in the pathophysiology of ADHD bringing news arguments in favor of the Neuroenergetic theory of ADHD. Besides, the peripheral metabolome of SHR/NCrl rats also shared more than half of these differences further supporting the importance of looking at multiple matrices to characterize a pathophysiological condition of an individual. This also stresses out the importance of investigating the peripheral energy and oxidative stress metabolic pathways in the search of biomarkers of ADHD.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


Redox Report ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 28-46 ◽  
Author(s):  
Hassina Massudi ◽  
Ross Grant ◽  
Gilles J Guillemin ◽  
Nady Braidy

2021 ◽  
Vol 85 ◽  
pp. 103636
Author(s):  
Teresa Capriello ◽  
Luis M. Félix ◽  
Sandra M. Monteiro ◽  
Dércia Santos ◽  
Rita Cofone ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 42-50
Author(s):  
Zahra Nazari Barchestani ◽  
◽  
Maryam Rafieirad ◽  

Background: Ischemia causes severe neuronal damage and induces oxidative stress, memory impairment, and reduces pain threshold. Herniarin is a powerful antioxidant. Objectives: This study aimed to evaluate the effect of herniarin on memory, pain, and oxidative stress in an ischemia model in male rats. Materials & Methods: In this study, 50 male rats were divided into 5 groups of control, sham, ischemic, and two other ischemic groups, which received herniarin at doses of 150 and 300 mg/kg by gavage for 14 days. Behavioral tests were performed by shuttle box, and Y-maze and pain tests were performed by Tail-Flick test. Then, the rats’ brains were extracted to evaluate lipid peroxidation and measure the levels of thiol and Glutathione Peroxidase (GPX) in the hippocampus and striatum tissues. The results were expressed as Mean±SEM and then analyzed using suitable statistical methods of ANOVA and least significant difference post-hoc test in SPSS V. 20. Results: Herniarin significantly increased the avoidance memory, spatial memory, and pain thresholds of ischemic rats at different concentrations (P<0.001). Besides, the amount of malondialdehyde (MDA) and thiol in the ischemic group increased significantly in comparison to the control group (P<0.001). Also, in the ischemic group, GPX (P<0.001) significantly decreased. Decreased MDA (P<0.001) and thiol (P<0.001) and increased GPX levels were observed with herniarin administration (P<0.01). Conclusion: According to this study’s results, herniarin can remove free radicals and oxidant substances from the brain. Thus, it improves memory and pain thresholds in the brain hypoperfusion ischemia model.


Sign in / Sign up

Export Citation Format

Share Document