Perspective: Protein Supplementation During Prolonged Resistance Type Exercise Training Augments Skeletal Muscle Mass and Strength Gains

2013 ◽  
Vol 14 (1) ◽  
pp. 71-72 ◽  
Author(s):  
Naomi M. Cermak ◽  
Lisette CPGM de Groot ◽  
Luc J.C. van Loon
Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3362
Author(s):  
Ji Eun Shin ◽  
Seok Jun Park ◽  
Seung Il Ahn ◽  
Se-Young Choung

Sarcopenia, a loss of skeletal muscle mass and function, is prevalent in older people and associated with functional decline and mortality. Protein supplementation is necessary to maintain skeletal muscle mass and whey protein hydrolysates have the best nutrient quality among food proteins. In the first study, C57BL/6 mice were subjected to immobilization for 1 week to induce muscle atrophy. Then, mice were administered with four different whey protein hydrolysates for 2 weeks with continuous immobilization. Among them, soluble whey protein hydrolysate (WP-S) had the greatest increase in grip strength, muscle weight, and cross-sectional area of muscle fiber than other whey protein hydrolysates. To investigate the molecular mechanism, we conducted another experiment with the same experimental design. WP-S significantly promoted the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway and inhibited the PI3K/Akt/forkhead box O (FoxO) pathway. In addition, it increased myosin heavy chain (MyHC) expression in both the soleus and quadriceps and changed MyHC isoform expressions. In conclusion, WP-S attenuated muscle atrophy induced by immobilization by enhancing the net protein content regulating muscle protein synthesis and degradation. Thus, it is a necessary and probable candidate for developing functional food to prevent sarcopenia.


2018 ◽  
Vol 108 (5) ◽  
pp. 1026-1033 ◽  
Author(s):  
Yongsoon Park ◽  
Jeong-Eun Choi ◽  
Hwan-Sik Hwang

ABSTRACTBackgroundAge-related loss of muscle mass and function is a major component of frailty. Nutrition supplementation with exercise is an effective strategy to decrease frailty by preventing sarcopenia, but the effect of protein alone is controversial.ObjectiveThe present study was performed to investigate a dose-dependent effect of protein supplementation on muscle mass and frailty in prefrail or frail malnourished elderly people.DesignA 12-wk double-blind randomized controlled trial was conducted in elderly subjects aged 70–85 y with ≥1 of the Cardiovascular Health Study frailty criteria and a Mini Nutritional Assessment score ≤23.5 (n = 120). Participants were randomly assigned to 1 of 3 groups: 0.8, 1.2, or 1.5 g protein · kg–1 · d–1, with concealed allocation and intention-to-treat analysis. Primary outcomes were appendicular skeletal muscle mass (ASM) and skeletal muscle mass index (SMI) measured by dual-energy X-ray absorptiometry.ResultsAfter the 12-wk intervention, the 1.5-g protein · kg–1 · d–1 group had higher ASM (mean ± SD: 0.52 ± 0.64 compared with 0.08 ± 0.68 kg, P = 0.036) and SMI (ASM/weight: 0.87% ± 0.69% compared with 0.15% ± 0.89%, P = 0.039; ASM/BMI: 0.02 ± 0.03 compared with 0.00 ± 0.04, P = 0.033; ASM:fat ratio: 0.04 ± 0.11 compared with −0.02 ± 0.10, P = 0.025) than the 0.8-g protein · kg–1 · d–1 group. In addition, gait speed was improved in the 1.5-g protein · kg–1 · d–1 group compared with the 0.8-g protein · kg–1 · d–1 group (0.09 ± 0.07 compared with 0.04 ± 0.07 m/s, P = 0.039). There were no significant differences between the 1.2- and 0.8-g protein · kg–1 · d–1 groups in muscle mass and physical performance. No harmful adverse effects were observed.ConclusionsThe present study indicates that protein intake of 1.5 g · kg–1 · d–1 has the most beneficial effects in regard to preventing sarcopenia and frailty compared with protein intakes of 0.8 and 1.2 g · kg–1 · d–1 in prefrail or frail elderly subjects at risk of malnutrition. This trial was registered at cris.nih.go.kr as KCT0001923.


Author(s):  
Paulo Sugihara Junior ◽  
Alex S. Ribeiro ◽  
Hellen C.G. Nabuco ◽  
Rodrigo R. Fernandes ◽  
Crisieli M. Tomeleri ◽  
...  

The purpose of this study was to investigate the effect of whey protein (WP) supplementation on muscular strength, hypertrophy, and muscular quality in older women preconditioned to resistance training (RT). In a randomized, double-blind, and placebo (PLA)-controlled design, 31 older women (67.4 ± 4.0 years, 62.0 ± 6.9 kg, 155.9 ± 5.7 cm, and 25.5 ± 2.4 kg/m2) received either 35 g of WP (n = 15) or 35 g of PLA (n = 16) over a 12-week study period while performing an RT program three times a week. Dietary intake, one-repetition maximum test, and skeletal muscle mass by dual-energy X-ray absorptiometry were assessed before and after the intervention period. Both groups showed significant (p < .05) improvements in skeletal muscle mass and total strength, and the WP group realized greater increases (p < .05) in these measures compared with PLA (skeletal muscle mass: WP = +4.8% vs. PLA = +2.3%; strength: WP = +8.7% vs. PLA = +4.9%). Muscular quality increased (p < .05) in both groups (WP = +2.9% vs. PLA = +1.5%) without statistical differences (p > .05) noted between conditions. We conclude that WP supplementation in combination with RT induces higher increases in both strength and hypertrophy in older women preconditioned to RT.


2010 ◽  
Vol 70 (1) ◽  
pp. 104-113 ◽  
Author(s):  
René Koopman

Ageing is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk for developing chronic metabolic diseases such as diabetes. The age-related loss of skeletal muscle mass results from a chronic disruption in the balance between muscle protein synthesis and degradation. As basal muscle protein synthesis rates are likely not different between healthy young and elderly human subjects, it was proposed that muscles from older adults lack the ability to regulate the protein synthetic response to anabolic stimuli, such as food intake and physical activity. Indeed, the dose–response relationship between myofibrillar protein synthesis and the availability of essential amino acids and/or resistance exercise intensity is shifted down and to the right in elderly human subjects. This so-called ‘anabolic resistance’ represents a key factor responsible for the age-related decline in skeletal muscle mass. Interestingly, long-term resistance exercise training is effective as a therapeutic intervention to augment skeletal muscle mass, and improves functional performance in the elderly. The consumption of different types of proteins, i.e. protein hydrolysates, can have different stimulatory effects on muscle protein synthesis in the elderly, which may be due to their higher rate of digestion and absorption. Current research aims to elucidate the interactions between nutrition, exercise and the skeletal muscle adaptive response that will define more effective strategies to maximise the therapeutic benefits of lifestyle interventions in the elderly.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Marcelo G. Pereira ◽  
Vanessa A. Voltarelli ◽  
Gabriel C. Tobias ◽  
Lara de Souza ◽  
Gabriela S. Borges ◽  
...  

Cancer cachexia is a multifactorial and devastating syndrome characterized by severe skeletal muscle mass loss and dysfunction. As cachexia still has neither a cure nor an effective treatment, better understanding of skeletal muscle plasticity in the context of cancer is of great importance. Although aerobic exercise training (AET) has been shown as an important complementary therapy for chronic diseases and associated comorbidities, the impact of AET on skeletal muscle mass maintenance during cancer progression has not been well documented yet. Here, we show that previous AET induced a protective mechanism against tumor-induced muscle wasting by modulating the Akt/mTORC1 signaling and eukaryotic initiation factors, specifically eIF2-α. Thereafter, it was determined whether the in vivo Akt activation would induce a hypertrophic profile in cachectic muscles. As observed for the first time, Akt-induced hypertrophy was able and sufficient to either prevent or revert cancer cachexia by modulating both Akt/mTORC1 pathway and the eIF-2α activation, and induced a better muscle functionality. These findings provide evidence that skeletal muscle tissue still preserves hypertrophic potential to be stimulated by either AET or gene therapy to counteract cancer cachexia.


Author(s):  
Arash Ardavani ◽  
Hariz Aziz ◽  
Ken Smith ◽  
Philip J. Atherton ◽  
Bethan E. Phillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document