scholarly journals Naturalization of almond trees (Prunus dulcis) in semi-arid regions of the Western Mediterranean

2015 ◽  
Vol 113 ◽  
pp. 108-113 ◽  
Author(s):  
Pablo Homet-Gutiérrez ◽  
Eugene W. Schupp ◽  
José M. Gómez
Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 733 ◽  
Author(s):  
Saray Gutiérrez-Gordillo ◽  
Víctor Hugo Durán Zuazo ◽  
Virginia Hernández-Santana ◽  
Fernando Ferrera Gil ◽  
Amelia García Escalera ◽  
...  

Almond (Prunus dulcis Mill. (D.A. Webb)) plantations in irrigated semi-arid areas need to successfully face the new scenarios of climate change combining sustainable irrigation strategies and tolerant cultivars to water stress. This work examines the response of young almond (cvs. Guara, Marta, and Lauranne) subjected to different irrigation doses under semi-arid conditions (South-West Spain). The trial was conducted during two seasons (2018–2019) with three irrigation strategies: A full-irrigated treatment (FI), which received 100% of the irrigation requirements (IR), and two sustained-deficit irrigation strategies that received 75% (SDI75) and 65% (SDI65) of IR. Crop water status was assessed by leaf water potential (Ψleaf) and stomatal conductance (gs) measurements, determining the yield response at the end of each season. Different physiological responses for the studied cultivars were observed, especially considering the Ψleaf measurements. In this way, cv. Marta behaved more tolerant, while cvs. Guara and Lauranne maintained higher gs rates in response to water stress. These differences were also observed in terms of yield. The cv. Lauranne did not reflect yield losses, and the opposite trend was observed for cv. Guara, in which reductions on fruit numbers per tree were detected. On overall, effective irrigation water savings (≈2100 m3·ha−1 in SDI65) could be feasible, although these responses are going to be substantially different, depending on the used cultivar.


2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Senni Rachida ◽  
De Belair Gerard ◽  
Abdelkrim Hacene
Keyword(s):  

1987 ◽  
Vol 19 (9) ◽  
pp. 97-106
Author(s):  
J. J. Vasconcelos

Hater resource managers in semi-arid regions are faced with some unique problems. The wide variations in precipitation and stream flows in semi-arid regions increase man's dependence on the ground water resource for an ample and reliable supply of water. Proper management of the ground water resource is absolutely essential to the economic well being of semi-arid regions. Historians have discovered the remains of vanished advanced civilizations based on irrigated agriculture which were ignorant of the importance of proper ground water resource management. In the United States a great deal of effort is presently being expended in the study and control of toxic discharges to the ground water resource. What many public policy makers fail to understand is that the potential loss to society resulting from the mineralization of the ground water resource is potentially much greater than the loss caused by toxic wastes discharges, particularly in developing countries. Appropriations for ground water resource management studies in developed countries such as the United States are presently much less than those for toxic wastes management and should be increased. It is the reponsibility of the water resource professional to emphasize to public policy makers the importance of ground water resource management. Applications of ground water resource management models in the semi-arid Central Valley of California are presented. The results demonstrate the need for proper ground water resource management practices in semi-arid regions and the use of ground water management models as a valuable tool for the water resource manager.


Author(s):  
Mohammad Abdul Kader ◽  
Ashutus Singha ◽  
Mili Amena Begum ◽  
Arif Jewel ◽  
Ferdous Hossain Khan ◽  
...  

Abstract Agricultural water resources have been limited over the years due to global warming and irregular rainfall in the arid and semi-arid regions. To mitigate the water stress in agriculture, mulching has a crucial impact as a water-saving technique in rain-fed crop cultivation. It is important mainly for preserving soil moisture, relegating soil temperature, and limiting soil evaporation, which affects the crop yield. Mulching has many strategic effects on soil ecosystem, crop growth, and climate. Mulch insulates the soil, helping to provide a buffer from cold and hot temperatures that have a crucial activity in creating beautiful and protected landscapes. This study has accumulated a series of information about both organic and plastic mulch materials and its applicability on crop cultivation. Moreover, future research potentials of mulching with modeling were discussed to quantify water loss in agriculture.


Sign in / Sign up

Export Citation Format

Share Document