Role of Flow Cytometry in Cytohistologic Correlation Using the Proposed Sydney System for Reporting Lymph Node Cytology: Experience from a Single Academic Institution

2021 ◽  
Vol 10 (5) ◽  
pp. S39
Author(s):  
Abhinav Grover ◽  
Tamara Giorgadze ◽  
Laila Nomani
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing Dong ◽  
Chao Wang ◽  
Jing Zhang ◽  
Jinrong Zhang ◽  
Yinuo Gu ◽  
...  

Abstract Background Severe, steroid-resistant asthma (SSRA) is a serious clinical problem in asthma management. Affected patients have severe clinical symptoms, worsened quality of life, and do not respond to steroid, a mainstay steroid treatment of asthma. Thus, effective therapies are urgently needed. Exosomes derived from mesenchymal stem cell (MSC-Exo) has become attractive candidates for the lung inflammatory diseases through its immunomodulatory effects. In this study, we explored the therapeutic effects of MSC-Exo in SSRA and identified the therapeutic mechanism of MSC-Exo. Method Exosomes from human umbilical cord mesenchymal stem cell (hUCMSC) were isolated and characterized by transmission electron microscopy, nanoparticle tracking analysis and flow cytometry analysis. Effects of MSC-Exo on airway hyper responsiveness (AHR), inflammation, histopathology, and macrophage polarization in SSRA in mice were evaluated. Systematic depletion of macrophages determined the role of macrophages in the therapeutic effect of SSRA in mice. LPS-stimulated RAW 264.7 cell model was constructed to determine the underlying mechanism of MSC-Exo on macrophage polarization. qRT-PCR, Western blotting, immunofluorescence, and flow cytometry were performed to evaluate the expression of M1 or M2 markers. Tandem mass tags (TMT)-labeled quantitative proteomics were applied to explore the central protein during the regulation effect of MSC-Exo on macrophage polarization. Knockdown and overexpression of TRAF1 were used to further clarify the role of the central protein on macrophage polarization. Result We successfully isolated and characterized exosomes from hUCMSCs. We verified that the intratracheal administration of MSC-Exo reversed AHR, histopathology changes, and inflammation in SSRA mice. Systematic depletion of macrophages weakened the therapeutic effect of MSC-Exo. We found that MSC-Exo treatment inhibited M1 polarization and promoted M2 polarization in LPS-stimulated RAW 264.7 cells. Subsequently, tumor necrosis factor receptor-associated factor 1 (TRAF1) was determined as the central protein which may be closely related to the regulation of macrophage polarization from TMT-labeled quantitative proteomics analysis. Knockdown and overexpression of TRAF1 demonstrated that the effect of MSC-Exo treatment on macrophage polarization, NF-κB and PI3K/AKT signaling was dependent on TRAF1. Conclusion MSC-Exo can ameliorate SSRA by moderating inflammation, which is achieved by reshaping macrophage polarization via inhibition of TRAF1.


Breast Cancer ◽  
2012 ◽  
Vol 20 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Masakuni Noguchi ◽  
Emi Morioka ◽  
Yukako Ohno ◽  
Miki Noguchi ◽  
Yasuharu Nakano ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Héctor Enrique Torres Rivas ◽  
Karen Villar Zarra ◽  
Lisseth Andrea Pérez Pabón ◽  
María de la Paz González Gutierréz ◽  
Nuria Zapico Ortiz ◽  
...  

<b><i>Introduction:</i></b> The Sydney system proposal for the study and reporting of lymphadenopathy by fine-needle aspiration (FNA) constitutes one of the first attempts to standardize this procedure. Here, we review its applicability. <b><i>Materials and Methods:</i></b> A retrospective study in which all ultrasound-guided FNAs (USFNAs) of superficial lymphadenopathy (palpable or not) performed by interventional pathologists in 2 specialized hospital centers were quantified over 2 years. The procedure was systematized, and the diagnoses were reclassified according to the Sydney system categories. <b><i>Results:</i></b> We analyzed 363 USFNAs of lymphadenopathies. The distribution of cases by categories was as follows: insufficient (<i>n</i> = 13; 3.58%), benign (<i>n</i> = 208; 57.30%), atypia of uncertain significance (<i>n</i> = 7; 1.93%), suspicious (<i>n</i> = 21; 5.79), and malignant (<i>n</i> = 114; 31.40%). The risks of malignancy calculated for categories I, II, III, IV, and V were 27%, 3%, 50%, 100%, and 100%, respectively. <b><i>Conclusion:</i></b> The implementation of the Sydney system allows the systematization and standardization of the lymph node FNA methodology, with increased efficacy and efficiency. Assimilating the recommendations enables the qualification of the diagnostic procedure.


2021 ◽  
Vol 32 ◽  
pp. S50
Author(s):  
E. Tanrikulu Simsek ◽  
E. Çoban ◽  
E. Atag ◽  
S. Gungor ◽  
M. Sarı ◽  
...  

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yokota Yunosuke ◽  
Goh Kodama ◽  
Sakuya Itou ◽  
Yosuke Nakayama ◽  
Nobukazu Komatsu ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI), even if followed by renal recovery, is a risk factor for the future development of chronic kidney disease (CKD) and end- stage renal disease. It has been postulated that interleukin-10 (IL-10)-producing Regulatory B cells (Breg) play an important role for the tissue repairment in several tissues and organs. Basically, protective role of Breg has been reported in inflammatory bowel disease. In the kidney, it has been shown that IL-10 suppresses renal function decline and improves renal prognosis in IRI model, a typical model of AKI. However, the identity of Breg in the kidney and their origin have not been clarified. Further, how the Breg works during the transition from AKI to CKD is not known. Therefore, first we investigated whether Breg existed in renal tissue on the progression from AKI to CKD in IRI model mice. Further, we performed splenectomy, and examined the renal injury, Breg, and plasma IL-10 levels in this model. Method To examine the existence of Breg in the kidney of IRI model, we used 8-10 weeks-old GFP / IL-10 mice based on C57BL / 6J mice. They are reporter mice for IL-10 producing cells, and can visualize IL-10 producing cells under a fluorescence microscope without fluorescent immunostaining. We prepared following three groups, sham, IRI (unilateral), and IRI + SN (splenectomy) groups. Mice were anesthetized with chloral hydrate (4 g/kg,, intraperitoneal). After making a midline incision, exposed a blood vessel of the left renal pedicles and clamped it for 30 min by clips. one day, 7 days, and 14 days after the surgery, mice were sacrificed, and renal function and plasma IL-10 levels as well as tissue damages by PAS and Masson’s Trichrome staining were assessed. Tissue IL-10-producing cells were detected by flow cytometry. Results There was no difference of plasma IL-10 levels and renal tubulointerstitial injury in IRI group and IRI+SN group on day 1 after IRI. However, on day 7 and day 14, plasma IL-10 levels became gradually higher in IRI group, and SN decreased the increase in IL-10 levels. Tubulointerstitial injury was induced by IRI and SN further worsened tubular damages. Serum Cr and BUN levels were not different in three groups due to normal right kidney. On day 1, number of IL-10-producing B cells increased in the spleen and renal medulla in IRI group confirmed by flow cytometry, which was completely diminished by SN, suggesting that origin of the infiltrated Breg might be spleen, thereby being involved in the protective role in IRI injury in the kidney. Conclusion We report for the first time that Breg might be recruited from spleen by AKI, which may be one of the mechanisms to prevent the progression to CKD.


2017 ◽  
Vol 313 (5) ◽  
pp. L899-L915 ◽  
Author(s):  
Fumiaki Kato ◽  
Seiichiro Sakao ◽  
Takao Takeuchi ◽  
Toshio Suzuki ◽  
Rintaro Nishimura ◽  
...  

Pulmonary arterial hypertension (PAH) is characterized by progressive obstructive remodeling of pulmonary arteries. However, no reports have described the causative role of the autophagic pathway in pulmonary vascular endothelial cell (EC) alterations associated with PAH. This study investigated the time-dependent role of the autophagic pathway in pulmonary vascular ECs and pulmonary vascular EC kinesis in a severe PAH rat model (Sugen/hypoxia rat) and evaluated whether timely induction of the autophagic pathway by rapamycin improves PAH. Hemodynamic and histological examinations as well as flow cytometry of pulmonary vascular EC-related autophagic pathways and pulmonary vascular EC kinetics in lung cell suspensions were performed. The time-dependent and therapeutic effects of rapamycin on the autophagic pathway were also assessed. Sugen/hypoxia rats treated with the vascular endothelial growth factor receptor blocker SU5416 showed increased right ventricular systolic pressure (RVSP) and numbers of obstructive vessels due to increased pulmonary vascular remodeling. The expression of the autophagic marker LC3 in ECs also changed in a time-dependent manner, in parallel with proliferation and apoptotic markers as assessed by flow cytometry. These results suggest the presence of cross talk between pulmonary vascular remodeling and the autophagic pathway, especially in small vascular lesions. Moreover, treatment of Sugen/hypoxia rats with rapamycin after SU5416 injection activated the autophagic pathway and improved the balance between cell proliferation and apoptosis in pulmonary vascular ECs to reduce RVSP and pulmonary vascular remodeling. These results suggested that the autophagic pathway can suppress PAH progression and that rapamycin-dependent activation of the autophagic pathway could ameliorate PAH.


Sign in / Sign up

Export Citation Format

Share Document