Characteristics of atmospheric waves in the upper troposphere observed with the Gadanki MST Radar—RASS

2011 ◽  
Vol 73 (9) ◽  
pp. 1020-1030 ◽  
Author(s):  
T.V. Chandrasekhar Sarma ◽  
Yasu-Masa Kodama ◽  
Toshitaka Tsuda
2012 ◽  
Vol 12 (22) ◽  
pp. 11085-11093 ◽  
Author(s):  
Z. Li ◽  
S. Naqvi ◽  
A. J. Gerrard ◽  
J. L. Chau ◽  
Y. Bhattacharya

Abstract. Persistent wind jet structures along zonal and meridional fields, believed to be caused by stationary gravity waves, were detected in February 1999 in mesosphere-stratosphere-troposphere (MST) radar wind measurements of the troposphere and lower stratosphere over Jicamarca, Peru. Over a continuous seven day span of MST-data analyzed in this study, two days of observations showed signatures of wave-like structures in the upper troposphere/lower stratosphere wind jets associated with the phases of the stationary gravity waves. We believe these wave-like structures are ducted gravity waves. We present these initial observations, their characteristics, and the results of simple numerical simulations used in an attempt to mimic these observed features. Although a fair replication of the observed ducted structure in the numerical model is found, the observed period of ~90 min is nonetheless much longer than what is traditionally observed. As a result, the specific physical nature of the observed structures is not fully established. Nevertheless, given the high quality of the observations, we demonstrate here that continued analysis of this data set and concurrent modeling efforts will allow for a better understanding of Doppler ducts at high spatial and temporal resolution, and the results presented here can ultimately be applied to studies of middle atmospheric fronts, ducts, and bores.


2004 ◽  
Vol 22 (11) ◽  
pp. 4013-4023 ◽  
Author(s):  
A. K. Ghosh ◽  
S. S. Das ◽  
A. K. Patra ◽  
D. N. Rao ◽  
A. R. Jain

Abstract. Simultaneous observations made on four days using the MST radar and GPS-sonde at Gadanki (13.5° N, 79.2° E), a tropical station in India, are presented to address the aspect sensitivity of radar backscatters observed at different heights. The observations show that wherever stability parameter N2 is high, vertical shear of horizontal wind is low and Richardson number (Ri) is high, the aspect sensitivity is high indicating that the aspect sensitive radar backscatters are due to thermal structures in the atmosphere. Such a case can be seen very clearly in the upper troposphere and lower stratosphere. At some heights, where N2 is high, Ri is high, but shears are relatively weak, the aspect sensitivity is found to almost disappear, indicating that some amount of shear provides favorable conditions for causing aspect sensitivity. Aspect sensitivity does not occur at all where N2 is low or negative and Ri is low in spite of wind shear being either high or low, indicating that the regions are well mixed and hence turbulent. The study also shows a power difference in the symmetric beams. A case study on this aspect suggests that this asymmetry is due to the tilting of layers by the action of atmospheric waves. There is indication that these waves are generated through Kelvin-Helmholtz-instability (KHI).


Tellus ◽  
1972 ◽  
Vol 24 (6) ◽  
pp. 499-513 ◽  
Author(s):  
G. P. Kurbatkin
Keyword(s):  

2020 ◽  
Vol 12 (23) ◽  
pp. 3946
Author(s):  
Pasquale Sellitto ◽  
Silvia Bucci ◽  
Bernard Legras

Clouds in the tropics have an important role in the energy budget, atmospheric circulation, humidity, and composition of the tropical-to-global upper-troposphere–lower-stratosphere. Due to its non-sun-synchronous orbit, the Cloud–Aerosol Transport System (CATS) onboard the International Space Station (ISS) provided novel information on clouds from space in terms of overpass time in the period of 2015–2017. In this paper, we provide a seasonally resolved comparison of CATS characterization of high clouds (between 13 and 18 km altitude) in the tropics with well-established CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) data, both in terms of clouds’ occurrence and cloud optical properties (optical depth). Despite the fact that cloud statistics for CATS and CALIOP are generated using intrinsically different local overpass times, the characterization of high clouds occurrence and optical properties in the tropics with the two instruments is very similar. Observations from CATS underestimate clouds occurrence (up to 80%, at 18 km) and overestimate the occurrence of very thick clouds (up to 100% for optically very thick clouds, at 18 km) at higher altitudes. Thus, the description of stratospheric overshoots with CATS and CALIOP might be different. While this study hints at the consistency of CATS and CALIOP clouds characterizaton, the small differences highlighted in this work should be taken into account when using CATS for estimating cloud properties and their variability in the tropics.


2011 ◽  
Vol 4 (10) ◽  
pp. 2273-2292 ◽  
Author(s):  
S. Schweitzer ◽  
G. Kirchengast ◽  
V. Proschek

Abstract. LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that the set of SWIR channels proposed for implementing the LMIO method (Kirchengast and Schweitzer, 2011) provides adequate sensitivity to accurately retrieve eight trace species of key importance to climate and atmospheric chemistry (H2O, CO2, 13CO2, C18OO, CH4, N2O, O3, CO) in the upper troposphere/lower stratosphere region outside clouds under all atmospheric conditions. Two further species (HDO, H218O) can be retrieved in the upper troposphere.


Sign in / Sign up

Export Citation Format

Share Document