Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: An in vivo measurement-based computational study

2020 ◽  
Vol 101 ◽  
pp. 109617 ◽  
Author(s):  
Xindong Zhou ◽  
Lekang Yin ◽  
Lijian Xu ◽  
Fuyou Liang
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110180
Author(s):  
Qinghe Yao ◽  
Hongkun Zhu

An experiment-based computational study that helps analyze blood flow behavior and wall shear stress (WSS) distribution is reported in this work. Large scale numerical analysis of hemodynamics in swine-specific stenosed carotid artery based on in vivo surgery is presented. A pressure stabilized domain decomposition method is used to symmetrize the linear systems of Navier-Stokes equations and the convection-diffusion equation. A numerical expression of swine blood flow and a detailed swine carotid vessel model with stenosis are newly proposed, and the empirical function of WSS was validated for the swine model. Two wall models, a rigid and another elastic, are compared in precisely modelling for pathological analysis of vascular disease like carotid atherosclerosis and hemangioma. The flexible wall performs better in representing experimental conditions while the stern wall is much more efficient. Numerical results show that the stenosis has a great influence on the behavior and characters of blood and its subsequent affect the WSS of the vessel; further details show how stenosis affect the distribution and magnitude of wall shear stress in an artery which lay a foundation for further medical study.


2020 ◽  
Vol 59 (SK) ◽  
pp. SKKE16 ◽  
Author(s):  
Ryo Nagaoka ◽  
Kazuma Ishikawa ◽  
Michiya Mozumi ◽  
Magnus Cinthio ◽  
Hideyuki Hasegawa

Author(s):  
Risa Robinson ◽  
Lynn Fuller ◽  
Harvey Palmer ◽  
Mary Frame

Blood flow regulation in the microvascular network has been investigated by means of computational fluid dynamics, in vivo particle tracking and microchannel models. It is evident from these studies that shear stress along the wall is a key factor in the communication network that results in blood flow modification, yet current methods for shear stress determination are acknowledged to be imprecise. Micromachining technology allows for the development of implantable shear stress sensors that will enable us to monitor wall shear stress at multiple locations in arteriole bifurcations. In this study, a microchannel was employed as an in vitro model of a microvessel. Thermal shear stress sensors were used to mimic the endothelial cells that line the vessel wall. A three dimensional computational model was created to simulate the system’s thermal response to the constant temperature control circuit and related wall shear stress. The model geometry included a silicon wafer section with all the fabrication layers — silicon dioxide, poly silicon resistor, silicon nitride — and a microchannel with cross section 17 μm × 17 μm. This computational technique was used to optimize the dimensions of the system for a 0.01 Reynolds number flow at room temperature in order to reduce the amount of heat lost to the substrate and to predict and maximize the signal response. Results of the design optimization are presented and the fabrication process discussed.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Salmasi ◽  
O.A Jarral ◽  
S Pirola ◽  
S Sasidharan ◽  
J Pepper ◽  
...  

Abstract Background Abnormal blood flow patterns can alter the material properties of the thoracic aorta via altered vascular biology and tissue biomechanics. In-vivo haemodynamic assessment of the aorta is yet to penetrate clinical practice due to our limited understanding of its effect on aortic wall properties. The decision for surgical treatment is based on size thresholds, limited to a single measurement of aortic diameter from routine imaging, although many aortic dissections (40–60%) occur below these size thresholds. This multi-centre study aims to assess the clinical utility of biomechanics principles in thoracic aortic aneurysm (TAA) risk rupture prediction using a substantial sample size. Methods Fifty-five patients undergoing surgery for root or ascending TAA were recruited from five cardiac centres. Bicuspid aortic valves and connective tissue disease were excluded from this study.Haemodynamic assessment Pre-operative 4-dimensional flow magnetic resonance imaging (4D-MRI) were conducted. Direct 4D-flow analysis and computational fluid dynamics (CFD) were performed creating detailed wall shear stress (WSS) maps across the whole aneurysms. Aortic wall assessment The aneurysmal aortic sample was obtained from surgery and subjected to region specific uniaxial failure tests in the circumferential and longitudinal directions, as well as delamination testing within the aortic media. Whole aneurysm histological characterisation was also conducted using computational pathology techniques. Blood flow, tissue mechanics and microstructural properties were used to develop a risk prediction model with assessment of elastin, collagen and smooth muscle cell composition, as well as failure strain assessment and dissection energy function. Results Outcomes of mechanical properties were: Young's Elastic Modulus as a measure of aortic stiffness (0.85 MPa ±0.69), as well as maximal tensile strength (0.49 MPa ± 0.36), which demonstrated reduced aortic wall strength in the outer curvature. This correlated with increased wall shear stress (WSS) (up to 10 Pa) and flow velocity (up to 43 l/min). Regions of abnormal flow and tissue mechanics correlated significantly with degraded medial microstructure (elastin abundance: 34 vs 66%; collagen abundance 26 vs 57%, p<0.05). Conclusions CFD modelling has the potential to provide a risk prediction of acute events in TAA beyond the current size classification, as validated by altered aortic tissue properties. Future longitudinal studies are warranted to validate this methods in moderately enlarging thoracic aortas. Flow, mechanical, histology properties Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): NIHR Imperial College BRC


Author(s):  
Xiao-Yong Shen ◽  
M. Barzegar Gerdroodbary ◽  
Amin Poozesh ◽  
Amir Musa Abazari ◽  
S. Misagh Imani

In recent decades, cardiovascular disease and stroke are recognized as the most important reason for the high death rate. Irregular bloodstream and the circulatory system are the main reason for this issue. In this paper, Computational Fluid dynamic method is employed to study the impacts of the flow pattern inside the cerebral aneurysm for detection of the hemorrhage of the aneurysm. To achieve a reliable outcome, blood flow is considered as a non-Newtonian fluid with a power-law model. In this study, the influence of the blood viscosity and velocity on the pressure distribution and average wall shear stress (AWSS) are comprehensively studied. Moreover, the flow pattern inside the aneurysm is investigated to obtain the high-risk regions for the rupture of the aneurysm. Our results indicate that the wall shear stress (WSS) increases with increasing blood flow velocity. Furthermore, the risk of aneurysm rupture is considerably increased when the AWSS increases more than 0.6. Indeed, the blood flow with high viscosity expands the high-risk region on the wall of the aneurysm. Blood flow indicates that the angle of the incoming bloodstream is substantially effective in the high-risk region on the aneurysm wall. The augmentation of the blood velocity and vortices considerably increases the risk of hemorrhage of the aneurysm.


2006 ◽  
Author(s):  
Yong Hyun Kim ◽  
Joon Sand Lee ◽  
Xin Wu

Vascular techniques have been used for curing the aneurysm, but the reason for the occurrence of aneurysms can not be known using these techniques. These techniques are usually used for preventing a significant situation such as rupture of an aneurysm. In our study, blood flow effects with or without vascular techniques inside an aneurysm were analyzed with computational fluid dynamics (CFD). Important hemodynamic quantities like wall shear stress and pressure in vessel are difficult to measure in-vivo. Blood flow is assumed to be Newtonian fluid. But it actually consists of platelets, so it is also considered a non-Newtonian fluid in this study. Results of the numerical model were used to compare and analyze fluid characteristics with experimental data. Using the flow characteristics (wall shear stress (WSS), wall shear stress gradient (WSSG)), the rupture area was identified to be located in the distal area. However, the rupture area, in vivo studies, was observed to be present at a different location. During pulsatile flow, vibration induced by flow is implicated by weakening of the artery wall and affects more than shear stress. After adapting the fluid-induced vibration, the rupture area in aneurysm is found to be located in the same area as the in-vivo result. Since smaller inflow and low WSS provide the effect of the distal neck, the vibration provides more effects in dome area. In this study it has been found that the effect of shear stress on the rupture of aneurysm is less than the effect of vibration. In the case of non-Newtonian fluid, vibration induced by flow also has more effects than WSS and WSSG. The simulation results gave detailed information about hemodynamics under physiological pulsatile inlet condition.


2010 ◽  
Vol 3 (6) ◽  
pp. 647-655 ◽  
Author(s):  
Michael Markl ◽  
Felix Wegent ◽  
Timo Zech ◽  
Simon Bauer ◽  
Christoph Strecker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document