Reactive Oxygen Species Produced by HBV Help in Replication and Autophagy in Host Cells

2017 ◽  
Vol 7 ◽  
pp. S18
Author(s):  
Amit K. Mishra ◽  
Kishor Pant ◽  
Saman M. Pradhan ◽  
Senthil K. Venugopal
2016 ◽  
Vol 198 (11) ◽  
pp. 1563-1575 ◽  
Author(s):  
Kieran D. Collins ◽  
Tessa M. Andermann ◽  
Jenny Draper ◽  
Lisa Sanders ◽  
Susan M. Williams ◽  
...  

ABSTRACTCytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor isHelicobacter pyloriTlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all testedH. pyloristrains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allowH. pylorito avoid areas of the stomach with high concentrations of reactive oxygen species.IMPORTANCEHelicobacter pylorisenses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aidsH. pyloriin encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions.H. pyloriencounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 693
Author(s):  
Lin Liu ◽  
Rui Fang ◽  
Ziyan Wei ◽  
Jingxue Wu ◽  
Xiaoyun Li ◽  
...  

The intestinal protozoan parasite, Giardia duodenalis, infects a large number of people in the world annually. Giardia infection has been considered a negative effect on intestinal epithelial cell growth, while the underlying mechanisms remain to be explored. Here we evaluated reactive oxygen species (ROS) production and apoptotic events in Giardia trophozoites-stimulated Caco-2 cells via fluorescence microscopy, transmission electron microscopy, flow cytometry, western blot, and cell counting kit-8 analyses. The results showed that Giardia trophozoite treatment could induce lactate dehydrogenase release and Caco-2 cell apoptosis. The ROS levels were increased post treatment. The observed typical characteristics of mitochondria damage include significant swelling and degeneration of matrix and cristae. After trophozoite treatment, the level of Bax protein expression was increased, while Bcl-2 protein decreased. Trophozoite stimulation also led to reduction of mitochondrial membrane potential and release of cytochrome c from the mitochondria to the cytoplasm, and this process was accompanied by activation of caspase-9 and caspase-3 and poly (ADP-ribose) polymerase 1 cleavage. Pretreatment with N-acetyl-L-cysteine, a ROS inhibitor, reversed G. duodenalis-induced Caco-2 cell apoptosis. Taken together, we indicated that G. duodenalis could induce Caco-2 cell apoptosis through a ROS- and mitochondria-mediated caspase-dependent pathway. This study furthers our understanding of the cellular mechanism of the interaction between Giardia trophozoites and host cells.


2018 ◽  
Vol 84 (22) ◽  
Author(s):  
Minjin Kim ◽  
Yunyeol Jo ◽  
Yoon Jung Hwang ◽  
Hye Won Hong ◽  
Sung Sik Hong ◽  
...  

ABSTRACTWhen phages infect bacteria cultured in the presence of sublethal doses of antibiotics, the sizes of the phage plaques are significantly increased. This phenomenon is known as phage-antibiotic synergy (PAS). In this study, the observation of PAS was extended to a wide variety of bacterium-phage pairs using different classes of antibiotics. PAS was shown in both Gram-positive and Gram-negative bacteria. Cells stressed with β-lactam antibiotics filamented or swelled extensively, resulting in an increase in phage production. PAS was also sometimes observed in the presence of other classes of antibiotics with or without bacterial filamentation. The addition of antibiotics inducedrecAexpression in various bacteria, but arecAdeletion mutant strain ofEscherichia colialso showed filamentation and PAS in the presence of quinolone antibiotics. The phage adsorption efficiency did not change in the presence of the antibiotics when the cell surfaces were enlarged as they filamented. Increases in the production of phage DNA and mRNAs encoding phage proteins were observed in these cells, with only a limited increase in protein production. The data suggest that PAS is the product of a prolonged period of particle assembly due to delayed lysis. The increase in the cell surface area far exceeded the increase in phage holin production in the filamented host cells, leading to a relatively limited availability of intracellular holins for aggregating and forming holes in the host membrane. Reactive oxygen species (ROS) stress also led to an increased production of phages, while heat stress resulted in only a limited increase in phage production.IMPORTANCEPhage-antibiotic synergy (PAS) has been reported for a decade, but the underlying mechanism has never been vigorously investigated. This study shows the presence of PAS from a variety of phage-bacterium-antibiotic pairings. We show that increased phage production resulted directly from a lysis delay caused by the relative shortage of holin in filamented bacterial hosts in the presence of sublethal concentrations of stress-inducing substances, such as antibiotics and reactive oxygen species (ROS).


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Juan-Hua Quan ◽  
Byung-Hun Kang ◽  
Jung-Bo Yang ◽  
Yun-Ee Rhee ◽  
Heung-Tae Noh ◽  
...  

Trichomonas vaginalis induces apoptosis in host cells through various mechanisms; however, little is known about the relationship between apoptosis, reactive oxygen species (ROS), and NF-κB signaling pathways in the cervical mucosal epithelium. Here, we evaluated apoptotic events, ROS production, and NF-κB activity in T. vaginalis-treated cervical mucosal epithelial SiHa cells, with or without specific inhibitors, using fluorescence microscopy, DNA fragmentation assays, subcellular fractionation, western blotting, and luciferase reporter assay. SiHa cells treated with live T. vaginalis at a multiplicity of infection of 5 (MOI 5) for 4 h produced intracellular and mitochondrial ROS in a parasite-load-dependent manner. Incubation with T. vaginalis caused DNA fragmentation, cleavage of caspase 3 and PARP, and release of cytochrome c into the cytoplasm. T. vaginalis-treated SiHa cells showed transient early NF-κB p65 nuclear translocation, which dramatically dropped at 4 h after treatment. Suppression of NF-κB activity was dependent on parasite burden. However, treatment with the ROS scavenger, N-acetyl-C-cysteine (NAC), reversed the effect of T. vaginalis on apoptosis and NF-κB inactivation in SiHa cells. Taken together, T. vaginalis induces apoptosis in human cervical mucosal epithelial cells by parasite-dose-dependent ROS production through an NF-κB-regulated, mitochondria-mediated pathway.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Andrew L. Chang ◽  
Tamara L. Doering

ABSTRACTMitochondria are essential organelles that act in pathways including ATP production, β-oxidation, and clearance of reactive oxygen species. They occur as a complex reticular network that constantly undergoes fusion and fission, mediated by dynamin-related proteins (DRPs). DRPs include Fzo1, which mediates fusion, and Dnm1, Mdv1, and Fis1, which mediate fission. Mitochondrial morphology has been implicated in virulence in multiple fungi, as with the association between virulence and increased mitochondrial fusion inCryptococcus gattii. This relationship, however, has not been studied inCryptococcus neoformans, a related opportunistic pathogen.C. neoformansis an environmental yeast that can adapt to the human host environment, overcome the innate immune system, and eventually disseminate and cause lethal meningoencephalitis. We used gene deletion of key DRPs to study their role in mitochondrial morphology and pathogenesis of this yeast. Interestingly, increasing mitochondrial fusion did not increase resistance to oxidative stress, unlike in model yeast. Blocking mitochondrial fusion, however, yielded increased susceptibility to oxidative and nitrosative stresses as well as complete avirulence. This lack of virulence was not mediated by any effects of altered mitochondrial function on two major virulence factors, capsule and melanin. Instead, it was due to decreased survival within macrophages, which in turn was a consequence of increased susceptibility to oxidative and nitrosative stress. Supporting this conclusion, reactive oxygen species (ROS) scavengers rescued the ability of fusion mutants to survive intracellularly. These findings increase our understanding of cryptococcal biology and virulence and shed light on an important group of proteins and cellular processes in this pathogen.IMPORTANCEC. neoformansis a yeast that causes fatal brain infection in close to 200,000 people worldwide every year, mainly afflicting individuals with AIDS or others who are severely immunocompromised. One feature of this microbe that helps it cause disease is that it is able to withstand toxic molecules it encounters when host cells engulf it in their efforts to control the infection. Mitochondria are important organelles responsible for energy production and other key cellular processes. They typically exist in a complex network that changes morphology by fusing and dividing; these alterations also influence mitochondrial function. Using genetic approaches, we found that changes in mitochondrial morphology dramatically influence cryptococcal virulence. We showed that this occurs because the altered mitochondria are less able to eliminate the harmful molecules that host cells produce to kill invading microbes. These findings are important because they elucidate fundamental biology and virulence and may suggest avenues for therapy.


Nanoscale ◽  
2019 ◽  
Vol 11 (24) ◽  
pp. 11530-11541 ◽  
Author(s):  
Yan Zhang ◽  
Noga Gal ◽  
Fabian Itel ◽  
Isabella N. Westensee ◽  
Edit Brodszkij ◽  
...  

Artificial organelles are envisioned as nanosized assemblies with intracellular biocatalytic activity to provide the host cells with non-native or missing/lost function.


Author(s):  
Marilyn Vasquez ◽  
Marisol Zuniga ◽  
Ana Rodriguez

Malaria is a highly inflammatory and oxidative disease. The production of reactive oxygen species by host phagocytes is an essential component of the host response to Plasmodium infection. Moreover, host oxidative enzymes, such as xanthine oxidase, are upregulated in malaria patients. Although increased production of reactive oxygen species contributes to the clearance of the parasite, excessive amounts of these free radicals can mediate inflammation and cause extensive damage to host cells and tissues, probably contributing to severe pathologies. Plasmodium has a variety of antioxidant enzymes that allow it to survive amidst this oxidative onslaught. However, parasitic degradation of hemoglobin within the infected red blood cell generates free heme, which is released at the end of the replication cycle, further aggravating the oxidative burden on the host and possibly contributing to the severity of life-threatening malarial complications. Additionally, the highly inflammatory response to malaria contributes to exacerbate the oxidative response. In this review, we discuss host and parasite-derived sources of oxidative stress that may promote severe disease in P. falciparum infection. Therapeutics that restore and maintain oxidative balance in malaria patients may be useful in preventing lethal complications of this disease.


2020 ◽  
Author(s):  
Ashley M. Dungan ◽  
Dieter Bulach ◽  
Heyu Lin ◽  
Madeleine J. H. van Oppen ◽  
Linda L. Blackall

ABSTRACTCorals are colonized by symbiotic microorganisms that exert a profound influence on the animal’s health. One noted symbiont is a single-celled alga (from the family Symbiodiniaceae), which provides the coral with most of its fixed carbon. During thermal stress, hyperactivity of photosynthesis results in a toxic accumulation of reactive oxygen species (ROS). If not scavenged by the antioxidant network, ROS may trigger a signaling cascade ending with the coral host and algal symbiont disassociating; this process is known as bleaching. Our goal was to construct a probiotic comprised of host-associated bacteria able to neutralize free radicals such as ROS. Using the coral model, the anemone Exaiptasia diaphana, and pure bacterial cultures isolated from the model animal, we identified six strains with high free radical scavenging ability belonging to the families Alteromonadaceae, Rhodobacteraceae, Flavobacteriaceae, and Micrococcaceae. In parallel, we established a “negative” probiotic consisting of genetically related strains with poor free radical scavenging capacities. From their whole genome sequences, we explored genes of interest that may contribute to their potential beneficial roles, which may help facilitate the therapeutic application of a bacterial probiotic. In particular, the occurrence of key pathways that are known to influence ROS in each of the strains has been inferred from the genomes sequences and are reported here.IMPORTANCECoral bleaching is tightly linked to the production of reactive oxygen species (ROS), which accumulates to a toxic level in algae-harboring host cells leading to coral-algal dissociation. Interventions targeting ROS accumulation, such as the application of exogenous antioxidants, have shown promise for maintaining the coral-algal partnership. With the feasibility of administering antioxidants directly to corals being low, we aim to develop a probiotic to neutralize toxic ROS during a thermal stress event. This probiotic can be tested with corals or a coral model to assess its efficacy in improving coral resistance to environmental stress.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Maria Fátima Horta ◽  
Bárbara Pinheiro Mendes ◽  
Eric Henrique Roma ◽  
Fátima Soares Motta Noronha ◽  
Juan Pereira Macêdo ◽  
...  

Cutaneous leishmaniasis affects millions of people around the world. Several species ofLeishmaniainfect mouse strains, and murine models closely reproduce the cutaneous lesions caused by the parasite in humans. Mouse models have enabled studies on the pathogenesis and effector mechanisms of host resistance to infection. Here, we review the role of nitric oxide (NO), reactive oxygen species (ROS), and peroxynitrite (ONOO−) in the control of parasites by macrophages, which are both the host cells and the effector cells. We also discuss the role of neutrophil-derived oxygen and nitrogen reactive species during infection withLeishmania. We emphasize the role of these cells in the outcome of leishmaniasis early after infection, before the adaptive Th-cell immune response.


Sign in / Sign up

Export Citation Format

Share Document