Hydrolysis of casein from different sources by immobilized trypsin on biochar: Effect of immobilization method

2020 ◽  
Vol 1146 ◽  
pp. 122124
Author(s):  
Evaldo C. Souza Júnior ◽  
Mateus P.F. Santos ◽  
Vanessa S. Sampaio ◽  
Sibelli P.B. Ferrão ◽  
Rafael C.I. Fontan ◽  
...  
Scientifica ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
T. A. V. Nguyen ◽  
Truong D. Le ◽  
Hoa N. Phan ◽  
Lam B. Tran

Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).


Author(s):  
Shivani Sachdev ◽  
Sanjay Kumar Ojha ◽  
Snehasish Mishra

Amylase is one of the leading enzymes used in industry from decades. The preliminary function of this enzyme is the hydrolysis of the starch molecule into glucose units and oligosaccharides. Amylases have spectacular application in broad spectrum of industries such as food, detergent, pharmaceutical and fermentation industries. Among different type of amylases α- amylase is in utmost demand because of its striking features. This particular enzyme is a good substitute over the chemicals catalyst used in industries. α- amylases can be acquired from different sources such as microorganism, animals and plants. Microorganisms are the major source of production of amylase because of the ease of availability, manipulation and operation.  The starch converting enzymes is basically generated using submerged fermentation.  Some of the prominent characteristics of amylase are its mode of action, substrate specificity and operating condition (temperature and pH). Amylases from different bacterial sources contribute differently to the particular trait of the enzyme. Bacillus amylases have been studied and applied so far because of their robustness in nature and easy accessible pure form of it. Thus this makes it more specific and fit for distinct application in the industry. The purpose of this manuscript was the comparative analysis of the physical and chemical features of α amylases from Bacillus species. It also focuses on the unique characteristics of this enzyme and their industrial applications.Int J Appl Sci Biotechnol, Vol 4(1): 3-14


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 537-544 ◽  
Author(s):  
Herbert Haas ◽  
John Banewicz

Extraction of carbon from bone hydroxy apatite as CO2 by heating in an oxygen atmosphere is an alternative method to hydrolysis of the bone. Heating in specific steps allows separation of CO2 fractions from different sources, including weakened or sound bone material and secondary deposits. Pretreatments to remove most secondary carbonate and much of the collagen are necessary. Thermogravimetric (weight loss) curves and CO2 release patterns during heating show that the temperature interval for collection of the most reliable CO2 sample for dating purposes lies between 800 and 950°C. Age dates run on such samples support this conclusion.


Biologia ◽  
2006 ◽  
Vol 61 (6) ◽  
Author(s):  
Ingrid Pauliková ◽  
Anna Hrabovská ◽  
Otto Helia ◽  
Ferdinand Devínsky

AbstractButyrylcholinesterase (BuChE) occurs in a multiple molecular forms whose catalytic activity depends on tissue distribution and species. The hypothesis led us to the study of BuChE catalytic properties focused on the inter-tissue and inter-species level with benzoylcholine and N-alkyl derivates of benzoylcholine (BCHn) as substrates. These compounds are soft disinfectants easily biodegradable to biologically inactive hydrolytic products, substituted choline and benzoic acid. Different sources of BuChE were used: rabbit and rat liver microsomal fraction (membrane-anchored enzyme) and serum (soluble form). Hydrolytic activity of both these BuChE forms was compared to rat recombinant BuChE (rBuChE). Hydrolytic product (benzoic acid) formation was recorded as function of time, and hydrolytic rate was determined. Tissue distribution of BuChE plays an important role in hydrolysis of BCHn. High BuChE activity was observed in a serum of both studied species rat and rabbit and was significantly dependent on a structure of substrates. Activity of soluble serum forms was the same as that for the rBuChE. Significant change of BuChE activity was recorded on the inter-species level in the microsomal fractions. It is because the rabbit microsomal BuChE activity had absolutely different course for all substrates as compared to rat microsomes. Inhibitory studies of BCHn enzymatic hydrolysis of all BuChE forms were performed to determine the level of BuChE participation in BCHn hydrolysis. It can be concluded that short-chain BCHn substrates are exclusively hydrolyzed by BuChE from all studied sources except for the rabbit liver microsomal fraction. Rabbit seems to have different enzymes involved in the hydrolysis of all studied BCHn compounds.


2007 ◽  
Vol 23 (12) ◽  
pp. 1725-1731 ◽  
Author(s):  
Larissa Freitas ◽  
Tânia Bueno ◽  
Victor H. Perez ◽  
Júlio C. Santos ◽  
Heizir Ferreira de Castro

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 956
Author(s):  
Paulina Majewska

The main objective of this study is the enantioselective synthesis of carboxyhydroxyphosphonates by lipase-catalyzed reactions. For this purpose, racemic dimethyl and dibutyl 1-butyryloxy-1-carboxymethylphosphonates were synthesized and hydrolyzed, using a wide spectrum of commercially available lipases from different sources (e.g., fungi and bacteria). The best hydrolysis results of dimethyl 1-butyryloxy-1-carboxymethylphosphonate were obtained with the use of lipases from Candida rugosa, Candida antarctica, and Aspergillus niger, leading to optically active dimethyl 1-carboxy-1-hydroxymethylphosphonate (58%–98% enantiomeric excess) with high enantiomeric ratio (reaching up to 126). However, in the case of hydrolysis of dibutyl 1-butyryloxy-1-carboxymethylphosphonate, the best results were obtained by lipases from Burkholderia cepacia and Termomyces lanuginosus, leading to optically active dibutyl 1-carboxy-1-hydroxymethylphosphonate (66%–68% enantiomeric excess) with moderate enantiomeric ratio (reaching up to 8.6). The absolute configuration of the products after biotransformation was also determined. In most cases, lipases hydrolyzed (R) enantiomers of both compounds.


Sign in / Sign up

Export Citation Format

Share Document