Precise evaluation the effect of microwave irradiation on the properties of palm kernel oil biodiesel used in a diesel engine

2019 ◽  
Vol 241 ◽  
pp. 117777 ◽  
Author(s):  
Hassanian Abdolkarim Allami ◽  
Mohammad Tabasizadeh ◽  
Abbas Rohani ◽  
Abdolali Farzad ◽  
Hamed Nayebzadeh
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4274
Author(s):  
Senthur Prabu Sabapathy ◽  
Asokan Morappur Ammasi ◽  
Esmail Khalife ◽  
Mohammad Kaveh ◽  
Mariusz Szymanek ◽  
...  

Biodiesel is considered as a key prospective renewable energy source in India. Hence, a study was carried out for the improvement of palm kernel oil biodiesel production using a transesterification process at different molar ratios. This study comprehensively examined all aspects of biodiesel from optimum production to the effect of additives on its combustion behavior. The optimum yield condition was validated with the MINITAB-17 software and analyzed using the Taguchi method. Two different additives, 5% diethyl ether (DEE) and 2000 ppm Butylated hydroxyltoluene (BHT), were also experimented. Engine experiments were conducted at constant speed (1500 rpm) and five different engine loads (0, 25, 50, 75 and 100%) on a single-cylinder direct injection diesel engine. Heat release rate, brake specific fuel consumption, brake thermal efficiency, engine emissions, such as CO, HC, NOx, and smoke opacity were analyzed. The maximum palm kernel oil (PKO) biodiesel yields, obtained at 55 °C, for the KOH and NaOH catalysts were 86.69% and 75.21% at the molar ratio of 6:1. B20BHT combustion showed 4.6% higher brake thermal efficiency (BTE). NOx emission was reduced by 19.4%, compared to the diesel fuel values. DEE resulted in higher CO and HC emissions compared to diesel fuel values by 39.2% and 7.6%, respectively, whereas smoke emission was improved by 11.5%.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Srinivas Kommana ◽  
Balu Naik Banoth ◽  
Kalyani Radha Kadavakollu

Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05), PKE10 (palm kernel oil 90 + eucalyptus 10), and PKE15 (palm kernel 85 + eucalyptus 15). The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.


2020 ◽  
Vol 1 (5) ◽  
pp. 42-50
Author(s):  
Godwin K. Ayetor ◽  
Joseph Parbey ◽  
Gabriel Osei

This works considered the possibility of using raw palm kernel oil as an alternative to petroleum diesel fuel in a VW engine. At present, very little results on engine durability tests of palm kernel oil use as a fuel has been recorded in literature. A Four-stroke indirect injection diesel engine with capacity of 314,280x 10³mm³ and compression ratio 20.1:1 with constant water cooler was used for the investigation. The engine used for the experimentation is an indirect diesel engine, which is normally the type installed on agricultural engines. The engine was run alternatively for 100 hours on petroleum diesel and palm kernel oil respectively. After the durability test, sample of the lubricating oil was collected and sent for laboratory test. Viscosity, additives and metallic debris was analysed during the laboratory test for both fuel cases to determine wear. Visual inspection was also carried out to determine the state of the engine before and after each run. The engine run with petroleum diesel fuel was compared with that of the engine with palm kernel oil based on their fuel supply system and the lubricating oil analysis. The results showed that raw palm kernel oil can be used as a substitute to petroleum diesel in an indirect diesel engine without any significant damage. In terms wear, the vegetable oil even showed better performance due to its high lubricity compared with petroleum diesel fuel. It is recommended that a heating system be installed on the engine to run on palm kernel oil. Keywords: palm kernel oil; raw vegetable oil; straight vegetable oil; durability; lubrication oil.


Author(s):  
Mohd Jumain Jalil ◽  
Aliff Farhan Mohd Yamin ◽  
Mohd Saufi Md Zaini ◽  
Veronique Gloria V. Siduru ◽  
Norhashimah Morad ◽  
...  

Background: Studies pertaining to the epoxidation of fatty acids, garnered much interest in recent years due to the rising demand of eco-friendly epoxides derived from vegetable oils. Methods: Epoxide is an important chemical precursor for the production of alcohols, glycols and polymers, like polyesters and epoxy resin. Epoxidation is the name given to the reaction when the double bonds are converted into epoxide. Results: Temperature at 55oC was used as a reference material in the epoxide process, as it produces a high yield epoxide being 88%. The kinetic rate of epoxidized palm kernel oil, k was obtained to be k11= 0.5125, k12= 0.05045, k21= 0.03185, k41= 0.01 and k51= 0.01243. Conclusion: Hence, by fitting the result with the experimental work and simulation, the summation of error being stimulated by I-sight simulation was 0.731116428 and the correlation between the experimental and simulation data was 0.925544.


2021 ◽  
Author(s):  
Samuel O. Egbuna ◽  
Ukeh J. Nwachukwu ◽  
Chinedu M. Agu ◽  
Christain O. Asadu ◽  
Bernard Okolo

Sign in / Sign up

Export Citation Format

Share Document