Utilization of biomass-based by-product lignin to suppress moisture loss-induced shrinkage of silty soil

2021 ◽  
pp. 129281
Author(s):  
Yu-Ling Yang ◽  
Tao Zhang ◽  
Song-Yu Liu
Keyword(s):  
2020 ◽  
Vol 63 (9) ◽  
pp. 2921-2929
Author(s):  
Alan H. Shikani ◽  
Elamin M. Elamin ◽  
Andrew C. Miller

Purpose Tracheostomy patients face many adversities including loss of phonation and essential airway functions including air filtering, warming, and humidification. Heat and moisture exchangers (HMEs) facilitate humidification and filtering of inspired air. The Shikani HME (S-HME) is a novel turbulent airflow HME that may be used in-line with the Shikani Speaking Valve (SSV), allowing for uniquely preserved phonation during humidification. The aims of this study were to (a) compare the airflow resistance ( R airflow ) and humidification efficiency of the S-HME and the Mallinckrodt Tracheolife II tracheostomy HME (M-HME) when dry (time zero) and wet (after 24 hr) and (b) determine if in-line application of the S-HME with a tracheostomy speaking valve significantly increases R airflow over a tracheostomy speaking valve alone (whether SSV or Passy Muir Valve [PMV]). Method A prospective observational ex vivo study was conducted using a pneumotachometer lung simulation unit to measure airflow ( Q ) amplitude and R airflow , as indicated by a pressure drop ( P Drop ) across the device (S-HME, M-HME, SSV + S-HME, and PMV). Additionally, P Drop was studied for the S-HME and M-HME when dry at time zero (T 0 ) and after 24 hr of moisture testing (T 24 ) at Q of 0.5, 1, and 1.5 L/s. Results R airflow was significantly less for the S-HME than M-HME (T 0 and T 24 ). R airflow of the SSV + S-HME in series did not significant increase R airflow over the SSV or PMV alone. Moisture loss efficiency trended toward greater efficiency for the S-HME; however, the difference was not statistically significant. Conclusions The turbulent flow S-HME provides heat and moisture exchange with similar or greater efficacy than the widely used laminar airflow M-HME, but with significantly lower resistance. The S-HME also allows the innovative advantage of in-line use with the SSV, hence allowing concurrent humidification and phonation during application, without having to manipulate either device.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 472g-473
Author(s):  
D.P. Coyne ◽  
J.M. Reiser ◽  
D. Smith ◽  
L. Sutton ◽  
D. Lindgren ◽  
...  

`Butterbowl' (NE-RBN-4) is a novel, small-sized (0.8 to 1.36 kg), flavorful (sweet), early maturing (90–95 days), near-oblate butternut type winter squash variety (Cucurbita moschata Duch. Ex Poir). No Butternut squash variety is similar in shape to `Butterbowl'. `Butterbowl' (S6) was derived from selfing a near-oblate open-pollinated S4 line derived from a cross of two true breeding crookneck lines (allelic test) NE-BNCR-67-1-7 (mutant out of `Butternut 23') X golden Cushaw (Agway Co.). Total fruit yield and fruit weight of `Butterbowl' were nearly similar to Butternut `Ponca'. The total fruit weight of'Waltham' was greater than `Butterbowl' in two out of four trials. The vining habit of `Butterbowl' (1.7 to 2.0 m) is more compact than `Waltham' or `Ponca'. `Butterbowl' is suitable for small gardens with limited space due to its compact plant habit. No crookneck fruit developed in `Butterbowl' in all tests. `Butterbowl' is resistant to bacterial spot, black fruit rot, and vine borer while it is moderately susceptible to powdery mildew. `Butterbowl' fruit should be used for consumption up to 45 to 55 days after harvest because slight fruit shriveling occurs at that time due to moisture loss. The fruit cooks uniformally in a microwave oven due to its more uniform flesh thickness.


2021 ◽  
Vol 11 (7) ◽  
pp. 3265
Author(s):  
Diofanor Acevedo-Correa ◽  
José Jaimes-Morales ◽  
Piedad M. Montero-Castillo

The objective of this research was to study the effect of edible coatings on the physicochemical properties of cassava chips. The oil and moisture absorption in fried cassava chips that were not coated and in chips that were coated with pectin and whey protein films were determined using a completely randomized experiment design with a 33 factorial arrangement. The multifactorial ANOVA analysis of variance showed that all factors had significant statistical differences for moisture loss and oil absorption (p < 0.05). The coating type, the control, and the whey protein-coated chips presented a 321% greater oil content on average at 180 °C and 180 s than the pectin-coated chips. The density, heat capacity, and thermal diffusivity had statistical differences at all temperatures (p < 0.05). The sensory analysis showed that the coating type affected all sensory parameters, except crispness, as indicated by significant statistical differences (p < 0.05). The temperature only influenced the color of the control chips, with statistical differences (p < 0.05) at all temperatures.


2021 ◽  
pp. 100568
Author(s):  
Geetanjali Das ◽  
Andry Razakamanantsoa ◽  
Gontran Herrier ◽  
Dimitri Deneele

2012 ◽  
Vol 30 (13) ◽  
pp. 1422-1431 ◽  
Author(s):  
Suxuan Xu ◽  
William L. Kerr

2008 ◽  
Vol 2 (3) ◽  
pp. 242-245
Author(s):  
Yiqun Tang ◽  
Ping Yang ◽  
Feng Shen ◽  
Nianqing Zhou
Keyword(s):  

Author(s):  
Yueqian Yu ◽  
Guohui Xu ◽  
Xin Wang ◽  
Huixin Liu ◽  
Qingpeng Zhao

Storm waves tend to cause seabed liquefaction by exerting strong cyclic loads on the seabed of the Yellow River Delta. In order to study influences of different wave heights on liquefaction depth of the soil bed, silty soil taken from the Yellow River Delta is used to prepare a soil bed for flume experiments and local parts of superficial soil layer were disturbed by hand. The weakened soil tended to liquefy and slide under wave actions and the liquefaction depth increased with the increasing of wave height. Based on the experimental results, an empirical relationship was proposed between liquefaction depth of silty soil bed and wave height under experimental conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
P. T. Akonor ◽  
H. Ofori ◽  
N. T. Dziedzoave ◽  
N. K. Kortei

The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L⁎=47.4) than the air-oven-dried (L⁎=49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p<0.05) higher in oven-dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently.


Sign in / Sign up

Export Citation Format

Share Document