Fire testing and design of stainless steel structures

2006 ◽  
Vol 62 (6) ◽  
pp. 532-543 ◽  
Author(s):  
L. Gardner ◽  
N.R. Baddoo
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miguel Ángel Caminero ◽  
Ana Romero ◽  
Jesús Miguel Chacón ◽  
Pedro José Núñez ◽  
Eustaquio García-Plaza ◽  
...  

Purpose Fused filament fabrication (FFF) technique using metal filled filaments in combination with debinding and sintering steps can be a cost-effective alternative for laser-based powder bed fusion processes. The mechanical behaviour of FFF-metal materials is highly dependent on the processing parameters, filament quality and adjusted post-processing steps. In addition, the microstructural material properties and geometric characteristics are inherent to the manufacturing process. The purpose of this study is to characterize the mechanical and geometric performance of three-dimensional (3-D) printed FFF 316 L metal components manufactured by a low-cost desktop 3-D printer. The debinding and sintering processes are carried out using the BASF catalytic debinding process in combination with the BASF 316LX Ultrafuse filament. Special attention is paid on the effects of build orientation and printing strategy of the FFF-based technology on the tensile and geometric performance of the 3-D printed 316 L metal specimens. Design/methodology/approach This study uses a toolset of experimental analysis techniques [metallography and scanning electron microcope (SEM)] to characterize the effect of microstructure and defects on the material properties under tensile testing. Shrinkage and the resulting porosity of the 3-D printed 316 L stainless steel sintered samples are also analysed. The deformation behaviour is investigated for three different build orientations. The tensile test curves are further correlated with the damage surface using SEM images and metallographic sections to present grain deformation during the loading progress. Mechanical properties are directly compared to other works in the field and similar additive manufacturing (AM) and Metal Injection Moulding (MIM) manufacturing alternatives from the literature. Findings It has been shown that the effect of build orientation was of particular significance on the mechanical and geometric performance of FFF-metal 3-D printed samples. In particular, Flat and On-edge samples showed an average increase in tensile performance of 21.7% for the tensile strength, 65.1% for the tensile stiffness and 118.3% for maximum elongation at fracture compared to the Upright samples. Furthermore, it has been able to manufacture near-dense 316 L austenitic stainless steel components using FFF. These properties are comparable to those obtained by other metal conventional processes such as MIM process. Originality/value 316L austenitic stainless steel components using FFF technology with a porosity lower than 2% were successfully manufactured. The presented study provides more information regarding the dependence of the mechanical, microstructural and geometric properties of FFF 316 L components on the build orientation and printing strategy.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 983
Author(s):  
Jingzhong Zhou ◽  
Kuoteng Sun ◽  
Songqiang Huang ◽  
Xuemin He ◽  
Zhaowei Hu ◽  
...  

Corrosion is a severe problem for steel structures in humid environments. In particular, humidity usually triggers the surface adhesion of microorganisms, leading to microbiologically induced corrosion. This study aims to explore the effect of bacterial biofilm formation on the pitting corrosion of stainless steel. This research uses electrochemical methods to obtain indirect evidence of the pitting corrosion of steel. In addition, in order to obtain direct evidence of the pitting corrosion of stainless steel, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the dimensional morphology of the stainless steel after pitting. It was shown that the bacterial adhesion increased with the pH and temperature, which significantly increased the surface roughness of the stainless steel. Electrochemical analysis revealed that the formation of biofilm greatly destroyed the oxide film of 304 SS and accelerated the corrosion of stainless steel by forming an oxygen concentration battery. SEM and AFM analyses showed cracks and dislocations on the surface of stainless steel underneath the attached bacteria, which suggested a direct role of biofilm in corrosion induction. The results presented here show that the bacterial biofilm formation on the steel surfaces significantly accelerated the corrosion and affected the pitting corrosion process of the steel structure.


2018 ◽  
Vol 763 ◽  
pp. 440-449
Author(s):  
Hafez Taheri ◽  
George Charles Clifton ◽  
Ping Sha Dong ◽  
Michail Karpenko ◽  
Gary M. Raftery ◽  
...  

Steel structures are well established as the preferred material for constructing seismic resisting systems in New Zealand and around the world. While the majority of steel framing is made of carbon steel, stainless steel is increasingly being considered for designing exposed steel structures. Because of significant differences in the mechanical properties between the two materials, seismic resisting system design rules for connections between carbon steel members may not be applicable, at least without modification, to connections between stainless steel members. This study has investigated the seismic performance of welded T-shaped beam-column moment resisting connections made of structural stainless steel beams and columns manufactured by laser welding. The paper included the results of three large-scale T-shaped specimens, of varying sizes, subjected to seismic loads. The grade of laser-fused stainless steel was 304 L and its specification was according to ASTM A276. The sections were subject to the seismic tests in accordance with the SAC protocol given in ANSI/AISC 341-10. The results shows substantial amount of energy dissipation by welded moment resisting stainless steel connections along with a high ductility capability and dependable behaviour in the inelastic range.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1565-1574
Author(s):  
Itsaso Arrayago ◽  
Kim J.R. Rasmussen ◽  
Esther Real

Sign in / Sign up

Export Citation Format

Share Document