Aptamer-navigated copolymeric drug carrier system for in vitro delivery of MgO nanoparticles as insulin resistance reversal drug candidate in Type 2 diabetes

2020 ◽  
Vol 57 ◽  
pp. 101764
Author(s):  
Kei X. Tan ◽  
Jaison Jeevanandam ◽  
Sharadwata Pan ◽  
Lau Sie Yon ◽  
Michael K. Danquah
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuanyan Wu ◽  
Yan Borné ◽  
Rui Gao ◽  
Maykel López Rodriguez ◽  
William C. Roell ◽  
...  

AbstractThe hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04–1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09–1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.


2019 ◽  
Vol 476 (16) ◽  
pp. 2371-2391 ◽  
Author(s):  
Saynaz A. Choudhary ◽  
Nikita Bora ◽  
Dipanjan Banerjee ◽  
Leena Arora ◽  
Anindhya Sundar Das ◽  
...  

Abstract Saturated free fatty acid-induced adipocyte inflammation plays a pivotal role in implementing insulin resistance and type 2 diabetes. Recent reports suggest A2A adenosine receptor (A2AAR) could be an attractive choice to counteract adipocyte inflammation and insulin resistance. Thus, an effective A2AAR agonist devoid of any toxicity is highly appealing. Here, we report that indirubin-3′-monoxime (I3M), a derivative of the bisindole alkaloid indirubin, efficiently binds and activates A2AAR which leads to the attenuation of lipid-induced adipocyte inflammation and insulin resistance. Using a combination of in silico virtual screening of potential anti-diabetic candidates and in vitro study on insulin-resistant model of 3T3-L1 adipocytes, we determined I3M through A2AAR activation markedly prevents lipid-induced impairment of the insulin signaling pathway in adipocytes without any toxic effects. While I3M restrains lipid-induced adipocyte inflammation by inhibiting NF-κB dependent pro-inflammatory cytokines expression, it also augments cAMP-mediated CREB activation and anti-inflammatory state in adipocytes. However, these attributes were compromised when cells were pretreated with the A2AAR antagonist, SCH 58261 or siRNA mediated knockdown of A2AAR. I3M, therefore, could be a valuable option to intervene adipocyte inflammation and thus showing promise for the management of insulin resistance and type 2 diabetes.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 439 ◽  
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Waseem Sharaf Saeed ◽  
Abdel-Basit Al-Odayni ◽  
Fahad A. Alharthi ◽  
Abdelhabib Semlali ◽  
...  

The release dynamics of aspirin(ASP), used as a drug model, from the poly(ethylene-co-vinyl alcohol)/poly(δ-valerolactone) (PE-co-VAL/Pδ-VL) hydrogel blend was controlled by varying the blend’s degree of swelling through a gradual loading of Pδ-VL (hydrophobic polymer) in this copolymer matrix. To achieve this goal, a series of PE-co-VAL/Pδ-VL blends with different ratios was prepared through the solvent casting method, and the miscibility of this polymer blend was evaluated by using Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electronic microscopy methods. The tests of cell adhesion and growth on the PE-co-VAL/Pδ-VL specimens were performed using the 3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and the results obtained were the best performance in terms of cell viability, cell adhesion, and growth of the PE-co-VAL/Pδ-VL50 material. The dynamic mechanical properties of the prepared material were also examined by dynamic mechanical analysis; the results obtained showed a material having intermediary mechanical properties between those of the two components. On the basis of these characterizations, the blend showing the best performance, such as the PE-co-VAL/Pδ-VL50 system, was chosen as a carrier to study the in vitro control of the release dynamics of ASP from the ASP/PE-co-VAL/Pδ-VL drug-carrier system when administered orally, in which the influences of the ASP content and the degree of swelling of the PE-co-VAL/Pδ-VL blend were investigated. Based on the data obtained and the gastrointestinal transit time reported by Beltzer et al., it was possible to estimate the distribution of the in vitro cumulative ASP released in different digestive system organs regardless of the actions of any enzymes and microorganisms and select the best-performing drug-carrier system.


2009 ◽  
Vol 87 (1) ◽  
pp. 37-50 ◽  
Author(s):  
D.B. McNamara ◽  
S.N. Murthy ◽  
A.N. Fonseca ◽  
C.V. Desouza ◽  
P.J. Kadowitz ◽  
...  

Diabetes is a complex disorder characterized by impaired insulin formation, release or action (insulin resistance), elevated blood glucose, and multiple long-term complications. It is a common endocrine disorder of humans and is associated with abnormalities of carbohydrate and lipid metabolism. There are two forms of diabetes, classified as type 1 and type 2. In type 1 diabetes, hyperglycemia is due to an absolute lack of insulin, whereas in type 2 diabetes, hyperglycemia is due to a relative lack of insulin and insulin resistance. More than 90% of people with diabetes have type 2 with varied degrees of insulin resistance. Insulin resistance is often associated with impaired insulin secretion, and hyperglycemia is a common feature in both types of diabetes, but failure to make a distinction between the types of diabetes in different animal models has led to confusion in the literature. This is particularly true in relation to cardiovascular disease in the presence of diabetes and especially the response to vascular injury, in which there are major differences between the two types of diabetes. Animal models do not completely mimic the clinical disease seen in humans. Animal models are at best analogies of the pathologic process they are designed to represent. The focus of this review is an analysis of intimal hyperplasia following catheter-induced vascular injury, including factors that may complicate comparisons between different animal models or between in vitro and in vivo studies. We examine the variables, pitfalls, and caveats that follow from the manner of induction of the injury and the diabetic state of the animal. The efficacy of selected antidiabetic drugs in inhibiting the development of the hyperplastic response is also discussed.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4072
Author(s):  
Abeer Aljubailah ◽  
Wafa Nazzal Odis Alharbi ◽  
Ahmed S. Haidyrah ◽  
Tahani Saad Al-Garni ◽  
Waseem Sharaf Saeed ◽  
...  

The Poly(2-chloroquinyl methacrylate-co-2-hydroxyethyl methacrylate) (CQMA-co-HEMA) drug carrier system was prepared with different compositions through a free-radical copolymerization route involving 2-chloroquinyl methacrylate (CQMA) and 2-hydroxyethyl methacrylate) (HEMA) using azobisisobutyronitrile as the initiator. 2-Chloroquinyl methacrylate monomer (CQMA) was synthesized from 2-hydroxychloroquine (HCQ) and methacryloyl chloride by an esterification reaction using triethylenetetramine as the catalyst. The structure of the CQMA and CQMA-co-HEMA copolymers was confirmed by a CHN elementary analysis, Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis. The absence of residual aggregates of HCQ or HCQMA particles in the copolymers prepared was confirmed by a differential scanning calorimeter (DSC) and XR-diffraction (XRD) analyses. The gingival epithelial cancer cell line (Ca9-22) toxicity examined by a lactate dehydrogenase (LDH) assay revealed that the grafting of HCQ onto PHEMA slightly affected (4.2–9.5%) the viability of the polymer carrier. The cell adhesion and growth on the CQMA-co-HEMA drug carrier specimens carried out by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay revealed the best performance with the specimen containing 3.96 wt% HCQ. The diffusion of HCQ through the polymer matrix obeyed the Fickian model. The solubility of HCQ in different media was improved, in which more than 5.22 times of the solubility of HCQ powder in water was obtained. According to Belzer, the in vitro HCQ dynamic release revealed the best performance with the drug carrier system containing 4.70 wt% CQMA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Bai ◽  
Ke Mo ◽  
Guirong Wang ◽  
Wanling Chen ◽  
Wei Zhang ◽  
...  

As a severe metabolic disease, type 2 diabetes mellitus (T2DM) has become a serious threat to human health in recent years. Gastrodin, as a primary chemical constituent in Gastrodia elata Blume, has antidiabetic effects. However, the possible mechanisms are unclear. The aim of the present study was to investigate the effects and possible mechanisms of gastrodin on the treatment of T2DM. In vivo, after treatment with gastrodin for 6 weeks, fasting blood glucose levels, blood lipid metabolism, and insulin sensitivity index values were remarkably reduced compared with those of the diabetic control group. The values of aspartate aminotransferase and alanine aminotransferase also showed that gastrodin alleviates liver toxicity caused by diabetes. Moreover, gastrodin relieved pathological damage to the pancreas in T2DM rats. In vitro, gastrodin alleviated insulin resistance by increasing glucose consumption, glucose uptake, and glycogen content in dexamethasone-induced HepG2 cells. The Western blotting results showed that gastrodin upregulated the expression of insulin receptors and ubiquitin-specific protease 4 (USP4) and increased the phosphorylation of GATA binding protein 1 (GATA1) and protein kinase B (AKT) in vivo and in vitro. Furthermore, gastrodin decreased the ubiquitin level of the insulin receptor via UPS4 and increased the binding of GATA1 to the USP4 promoter. Additionally, administration of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway inhibitors MK-2206 and LY294002 abolished the beneficial effects of gastrodin. Our results indicate that gastrodin promotes the phosphorylation of GATA1 via the PI3K/AKT pathway, enhances the transcriptional activity of GATA1, and then increases the expression level of USP4, thereby reducing the ubiquitination and degradation of insulin receptors and ultimately improving insulin resistance. Our study provides scientific evidence for the beneficial actions and underlying mechanism of gastrodin in the treatment of T2DM.


2014 ◽  
Vol 224 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Xiao-Bing Cui ◽  
Jun-Na Luan ◽  
Jianping Ye ◽  
Shi-You Chen

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases and many other chronic diseases. Adipose tissue inflammation is a critical link between obesity and insulin resistance and type 2 diabetes and a contributor to disease susceptibility and progression. The objective of this study was to determine the role of response gene to complement 32 (RGC32) in the development of obesity and insulin resistance. WT and RGC32 knockout (Rgc32−/− (Rgcc)) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Metabolic, biochemical, and histologic analyses were performed. 3T3-L1 preadipocytes were used to study the role of RGC32 in adipocytes in vitro. Rgc32−/− mice fed with HFD exhibited a lean phenotype with reduced epididymal fat weight compared with WT controls. Blood biochemical analysis and insulin tolerance test showed that RGC32 deficiency improved HFD-induced dyslipidemia and insulin resistance. Although it had no effect on adipocyte differentiation, RGC32 deficiency ameliorated adipose tissue and systemic inflammation. Moreover, Rgc32−/− induced browning of adipose tissues and increased energy expenditure. Our data indicated that RGC32 plays an important role in diet-induced obesity and insulin resistance, and thus it may serve as a potential novel drug target for developing therapeutics to treat obesity and metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document