A novel small molecule A2A adenosine receptor agonist, indirubin-3′-monoxime, alleviates lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes

2019 ◽  
Vol 476 (16) ◽  
pp. 2371-2391 ◽  
Author(s):  
Saynaz A. Choudhary ◽  
Nikita Bora ◽  
Dipanjan Banerjee ◽  
Leena Arora ◽  
Anindhya Sundar Das ◽  
...  

Abstract Saturated free fatty acid-induced adipocyte inflammation plays a pivotal role in implementing insulin resistance and type 2 diabetes. Recent reports suggest A2A adenosine receptor (A2AAR) could be an attractive choice to counteract adipocyte inflammation and insulin resistance. Thus, an effective A2AAR agonist devoid of any toxicity is highly appealing. Here, we report that indirubin-3′-monoxime (I3M), a derivative of the bisindole alkaloid indirubin, efficiently binds and activates A2AAR which leads to the attenuation of lipid-induced adipocyte inflammation and insulin resistance. Using a combination of in silico virtual screening of potential anti-diabetic candidates and in vitro study on insulin-resistant model of 3T3-L1 adipocytes, we determined I3M through A2AAR activation markedly prevents lipid-induced impairment of the insulin signaling pathway in adipocytes without any toxic effects. While I3M restrains lipid-induced adipocyte inflammation by inhibiting NF-κB dependent pro-inflammatory cytokines expression, it also augments cAMP-mediated CREB activation and anti-inflammatory state in adipocytes. However, these attributes were compromised when cells were pretreated with the A2AAR antagonist, SCH 58261 or siRNA mediated knockdown of A2AAR. I3M, therefore, could be a valuable option to intervene adipocyte inflammation and thus showing promise for the management of insulin resistance and type 2 diabetes.

2020 ◽  
Vol 16 ◽  
Author(s):  
Hend Al-Jaber ◽  
Layla Al-Mansoori ◽  
Mohamed A Elrayess

Background: Impaired adipogenesis plays an important role in the development of obesity-associated insulin resistance and type 2 diabetes as it leads to ectopic fat deposition. Discussion: The anti-adipogenic transcription factor GATA-3 was identified as one of the potential molecular targets responsible for impairment of adipogenesis. The expression of GATA-3 is higher in insulin resistant obese individuals compared to BMI-matched insulin sensitive counterparts. Adipose tissue inflammation is a crucial mediator of this process. Hyperglycemia mediates the activation of immune system, partially through upregulation of GATA-3, causing exacerbation of the inflammatory state associated with obesity. Conclusion: This review discusses evidence supporting the inhibition of GATA-3 as a useful therapeutic strategy in obesity-associated insulin resistance and type 2 diabetes, through up-regulation adipogenesis and amelioration of the immune response.


Author(s):  
Hend Sultan Al-Jaber ◽  
Layla Jadea Al-Mansoori ◽  
Mohamed Aghar Elrayess

Background: Impaired adipogenesis plays an important role in the development of obesityassociated insulin resistance and type 2 diabetes. Adipose tissue inflammation is a crucial mediator of this process. In hyperglycemia, immune system is activated partially through upregulation of GATA3, causing exacerbation of the inflammatory state associated with obesity. GATA3 also plays a role as a gatekeeper of terminal adipocyte differentiation. Here we are examining the impact of GATA3 inhibition in adipose tissue on restoring adipogenesis, reversing insulin resistance and potentially lowering the risk of type 2 diabetes. Results: GATA-3 expression was higher in insulin resistant obese individuals compared to their insulin sensitive counterparts. Targeting GATA-3 with GATA-3 specific inhibitors reversed impaired adipogenesis and induced changes in the expression of a number insulin signaling-related genes, including up-regulation of insulin sensitivity-related gene and down-regulation of insulin resistance-related genes. Conclusion: GATA3 expression is higher in differentiating adipocytes from obese insulin resistant. Inhibiting GATA3 improves adipocytes differentiation and rescues insulin sensitivity in insulin resistant cells


2021 ◽  
Author(s):  
Melinda Kertész ◽  
Szilárd Kun ◽  
Eszter Sélley ◽  
Zsuzsanna Nagy ◽  
Tamás Kőszegi ◽  
...  

Background: Type 2 diabetes is characterized, beyond the insulin resistance, by polyhormonal resistance. Thyroid hormonal resistance has not yet been described in this population of patients. Metformin is used to decrease insulin resistance, and at present it is assumed to influence the effect of triiodothyronine, as well. Methods: In this open label, pilot, hypothesis generating, follow-up study 21 patients were included, all of them euthyroid with drug naïve, newly diagnosed type 2 diabetes. Before and after four weeks of metformin therapy fructosamine, homeostasis model assessment for insulin resistance (HOMA-IR), thyroid hormones, T3/T4 ratio, and TSH, as well as blood pressure and heart rate using ambulatory blood pressure monitor were measured. We also conducted an in vitro study to investigate the possible mechanisms of T3 resistance, assessing T3 induced Akt phosphorylation among normal (5 mM) and high (25 mM) glucose levels with or without metformin treatment in a human embryonal kidney cell line. Results: Metformin decreased the level of T3 (p<0.001), the ratio of T3/T4 (p=0.038), fructosamine (p=0.008) and HOMA-IR (p=0.022). All these changes were accompanied by an unchanged TSH, T4, triglyceride, plasma glucose, bodyweight, blood pressure and heart rate. In our in vitro study, T3 induced Akt phosphorylation decreased in cells grown in 25 mM glucose medium compared to those in 5 mM. Metformin could not reverse this effect. Conclusion: Metformin seems to improve T3 sensitivity in the cardiovascular system in euthyroid, type 2 diabetic patients, the mechanism of which may be supracellular.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 601.2-602
Author(s):  
J. Avouac ◽  
M. Elhai ◽  
M. Forien ◽  
J. Sellam ◽  
F. Eymard ◽  
...  

Background:Type-2 diabetes and rheumatoid arthritis (RA) are two chronic diseases characterized by tissue inflammation and insulin resistance. To date, no data have evaluated the influence of RA-induced joint and systemic inflammation on the course of type-2 diabetes.Objectives:To study the impact of RA on type-2 diabetesMethods:Observational, multicenter, cross-sectional usual-care study, including 7 rheumatology centers. This study included over a 24-month period consecutive patients with type-2 diabetes and RA, fulfilling the 2010 ACR / EULAR criteria, and diabetic controls with osteoarthritis (OA). The following data were collected: demographics, disease activity and severity indices, current treatment for RA and diabetes, history and complications of diabetes. A systematic blood test was performed, assessing inflammatory (CRP levels) and metabolic (fasting glycemia and insulin levels, HbA1c) parameters. The HOMA2%B (insulin secretion) and HOMA2%S (tissue insulin sensitivity) indices (HOMA calculator, © Diabetes Trials Unit, University of Oxford) were used to assess insulin resistance. Ra and OA patients were compared using parametric tests after adjusting for age and BMI. A multivariate logistic regression was performed ti identify factors independently associated with insulin resistance.Results:We included 122 RA patients (74% women, mean age 64+/-11 years, mean disease duration 15+/-11 11 years, 75% with positive ACPA antibodies and 64% with erosive disease) and 54 controls with OA. 64% of RA patients were treated with oral corticosteroids <10 mg/day, 65% received methotrexate and 53% received targeted biological therapies.The characteristics of type-2 diabetes in the 54 OA patients corresponded to severe insulin-resistant diabetes: age> 65 years, high BMI> 30 kg/m2, mean HbA1c 7.3%+/-11 1.3%, 30% of insulin requirement, high frequency of other cardiovascular risk factors, macroangiopathy found in almost half of patients and biological criteria of insulin resistance (elevation of HOMA2%B and decrease of HOMA2%S).RA patients with type-2 diabetes had a younger age (64+/-11 years vs. 68+/-12 years, p=0.031) and lower BMI (27.7+/-11 5.5 vs. 31.5+/-11 6.3, p<0.001). These patients also had severe diabetes (HbA1c 7.0%+/-11 1.2%, 29% of insulin requirement, 43% of macroangiopathy) with an insulin resistance profile identical to OA controls. After adjusting for age and BMI, RA patients had a significantly increased insulin secretion compared to OA patients (HOMA2%B: 83.1+/-11 65.2 vs. 49.3+/-11 25.7, p=0.023) as well as a significant reduction of insulin sensitivity (HOMA2%S: 61.1+/-11 31.6 vs. 92.9+/-11 68.1, p=0.016). This insulin resistance was associated with the inflammatory activity of RA, with a negative correlation between the HOMA2%S and the DAS28 (r=-0.28, p=0.027). The multivariate logistic regression confirmed the independent association between the HOMA2%S index and DAS28 (OR: 3.93, 95% CI 1.02-15.06), as well as high blood pressure (OR: 1.29, 95% CI 0.33-1.99 CI).Conclusion:RA patients with type-2 diabetes displayed severe, poorly controlled diabetes, highlighting the burden of comorbidities associated with RA. The clinical-biological profile of diabetic RA patients was severe insulin-resistant diabetes, with a biological profile of insulin resistance linked to the inflammatory activity of the disease. These findings may have therapeutic implications, with the potential targeting of insulin resistance through the treatment of joint and systemic inflammation.Acknowledgments:Société Française de Rhumatologie (research grant)Bristol Myers Squibb (research grant)Disclosure of Interests:Jérôme Avouac Grant/research support from: Pfizer, Bristol Myers Squibb, Consultant of: Sanofi, Bristol Myers Squibb, Abbvie, Boerhinger, Nordic Pharma, Speakers bureau: Sanofi, Bristol Myers Squibb Abbvie, MSD, Pfizer, Nordic Pharma, Muriel ELHAI: None declared, Marine Forien: None declared, Jérémie SELLAM: None declared, Florent Eymard Consultant of: Regenlab, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB, Laure Gossec Grant/research support from: Lilly, Mylan, Pfizer, Sandoz, Consultant of: AbbVie, Amgen, Biogen, Celgene, Janssen, Lilly, Novartis, Pfizer, Sandoz, Sanofi-Aventis, UCB, Frédéric Banal: None declared, Joel Daminano: None declared, Philippe Dieudé: None declared, Yannick Allanore Shareholder of: Sanofi, Roche, Consultant of: Actelion, Bayer, BMS, Boehringer Ingelheim, Inventiva, Sanofi


2021 ◽  
pp. 019459982110147
Author(s):  
Ioan A. Lina ◽  
Alexandra Berges ◽  
Rafael Ospino ◽  
Ruth J. Davis ◽  
Kevin M. Motz ◽  
...  

Objective Iatrogenic laryngotracheal stenosis (iLTS) is the pathologic narrowing of the glottis, subglottis, and/or trachea secondary to intubation or tracheostomy related injury. Patients with type 2 diabetes mellitus (T2DM) are more likely to develop iLTS. To date, the metabolomics and phenotypic expression of cell markers in fibroblasts derived from patients with T2DM and iLTS are largely unknown. Study Design Controlled in vitro cohort study. Setting Tertiary referral center (2017-2020). Methods This in vitro study assessed samples from 6 patients with iLTS who underwent surgery at a single institution. Fibroblasts were isolated from biopsy specimens of laryngotracheal scar and normal-appearing trachea and compared with controls obtained from the trachea of rapid autopsy specimens. Patients with iLTS were subcategorized into those with and without T2DM. Metabolic substrates were identified by mass spectrometry, and cell protein expression was measured by flow cytometry. Results T2DM iLTS-scar fibroblasts had a metabolically distinct profile and clustered tightly on a Pearson correlation heat map as compared with non-T2DM iLTS-scar fibroblasts. Levels of itaconate were elevated in T2DM iLTS-scar fibroblasts. Flow cytometry demonstrated that T2DM iLTS-scar fibroblasts were associated with higher CD90 expression (Thy-1; mean, 95%) when compared with non-T2DM iLTS-scar (mean, 83.6%; P = .0109) or normal tracheal fibroblasts (mean, 81.1%; P = .0042). Conclusions Scar-derived fibroblasts from patients with T2DM and iLTS have a metabolically distinct profile. These fibroblasts are characterized by an increase in itaconate, a metabolite related to immune-induced scar remodeling, and can be identified by elevated expression of CD90 (Thy-1) in vitro.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuanyan Wu ◽  
Yan Borné ◽  
Rui Gao ◽  
Maykel López Rodriguez ◽  
William C. Roell ◽  
...  

AbstractThe hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04–1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09–1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.


2021 ◽  
pp. 1-9

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus [T2DM] onset. It occurs as a result of disturbances in lipid metabolism and increased levels of circulating free fatty acids [FFAs]. FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased fatty acid flux has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes development. FFAs appear to cause this defect in glucose transport by inhibiting insulin –stimulated tyrosine phosphorylation of insulin receptor substrate-1 [IRS-1] and IRS-1 associated phosphatidyl-inositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular or intrahepatic fatty acid metabolites that induce insulin resistance through different cellular mechanisms. The current review point out the link between enhanced FFAs flux and activation of PKC and how it impacts on both the insulin signaling in muscle and liver as shown from our laboratory data and highlighting the involvement of the inflammatory pathways importance. This embarks the importance of measuring the inflammatory biomarkers in clinical settings.


2021 ◽  
pp. 1-13

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus (T2D). It occurs as a result of lipid disorders and increased levels of circulating free fatty acids (FFAs). FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased levels fatty acid has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes. Among the biomarkers that are accompanying low grade inflammation include IL-1β, IL-6 and TNF-α. The current review point out the importance of measuring the inflammatory biomarkers especially focusing on the conductance and measurement for IL-6 as a screening laboratory test and its diagnostic value in clinical practice.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Elena V Tchetina ◽  
Galina A Markova ◽  
Eugeniya P Sharapova

Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Haya Al-Sulaiti ◽  
Ilhame Diboun ◽  
Maha V. Agha ◽  
Fatima F. S. Mohamed ◽  
Stephen Atkin ◽  
...  

Abstract Background Obesity is associated with an increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). However, some obese individuals maintain their insulin sensitivity and exhibit a lower risk of associated comorbidities. The underlying metabolic pathways differentiating obese insulin sensitive (OIS) and obese insulin resistant (OIR) individuals remain unclear. Methods In this study, 107 subjects underwent untargeted metabolomics of serum samples using the Metabolon platform. Thirty-two subjects were lean controls whilst 75 subjects were obese including 20 OIS, 41 OIR, and 14 T2DM individuals. Results Our results showed that phospholipid metabolites including choline, glycerophosphoethanolamine and glycerophosphorylcholine were significantly altered from OIS when compared with OIR and T2DM individuals. Furthermore, our data confirmed changes in metabolic markers of liver disease, vascular disease and T2DM, such as 3-hydroxymyristate, dimethylarginine and 1,5-anhydroglucitol, respectively. Conclusion This pilot data has identified phospholipid metabolites as potential novel biomarkers of obesity-associated insulin sensitivity and confirmed the association of known metabolites with increased risk of obesity-associated insulin resistance, with possible diagnostic and therapeutic applications. Further studies are warranted to confirm these associations in prospective cohorts and to investigate their functionality.


Sign in / Sign up

Export Citation Format

Share Document