Short-term versus long-term rainfall time series in the assessment of potable water savings by using rainwater in houses

2012 ◽  
Vol 100 ◽  
pp. 109-119 ◽  
Author(s):  
Enedir Ghisi ◽  
Karla Albino Cardoso ◽  
Ricardo Forgiarini Rupp
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Katerina G. Tsakiri ◽  
Antonios E. Marsellos ◽  
Igor G. Zurbenko

Flooding normally occurs during periods of excessive precipitation or thawing in the winter period (ice jam). Flooding is typically accompanied by an increase in river discharge. This paper presents a statistical model for the prediction and explanation of the water discharge time series using an example from the Schoharie Creek, New York (one of the principal tributaries of the Mohawk River). It is developed with a view to wider application in similar water basins. In this study a statistical methodology for the decomposition of the time series is used. The Kolmogorov-Zurbenko filter is used for the decomposition of the hydrological and climatic time series into the seasonal and the long and the short term component. We analyze the time series of the water discharge by using a summer and a winter model. The explanation of the water discharge has been improved up to 81%. The results show that as water discharge increases in the long term then the water table replenishes, and in the seasonal term it depletes. In the short term, the groundwater drops during the winter period, and it rises during the summer period. This methodology can be applied for the prediction of the water discharge at multiple sites.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jia Chaolong ◽  
Xu Weixiang ◽  
Wang Futian ◽  
Wang Hanning

The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM(1,1)is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


Author(s):  
Clony Junior ◽  
Pedro Gusmão ◽  
José Moreira ◽  
Ana Maria M. Tome

Data science highlights fields of study and research such as time series, which, although widely explored in the past, gain new perspectives in the context of this discipline. This chapter presents two approaches to time series forecasting, long short-term memory (LSTM), a special kind of recurrent neural network (RNN), and Prophet, an open-source library developed by Facebook for time series forecasting. With a focus on developing forecasting processes by data mining or machine learning experts, LSTM uses gating mechanisms to deal with long-term dependencies, reducing the short-term memory effect inherent to the traditional RNN. On the other hand, Prophet encapsulates statistical and computational complexity to allow broad use of time series forecasting, prioritizing the expert's business knowledge through exploration and experimentation. Both approaches were applied to a retail time series. This case study comprises daily and half-hourly forecasts, and the performance of both methods was measured using the standard metrics.


Author(s):  
Øistein Hagen ◽  
Jørn Birknes-Berg ◽  
Ida Håøy Grue ◽  
Gunnar Lian ◽  
Kjersti Bruserud ◽  
...  

As offshore reservoirs are depleted, the seabed may subside. Furthermore, the extreme crests estimates are now commonly higher than obtained previously due to improved understanding of statistics of non-linear irregular waves. Consequently, bottom fixed installations which have previously had sufficient clearance between the deck and the sea surface may be in a situation where wave impact with the deck must be considered at relevant probability levels. In the present paper, we investigate the long-term area statistics for maximum crest height under a fixed platform deck for 2nd order short crested and long crested sea based on numerical simulations as a function of platform deck dimension for jackets. The results are for one location in the northern North Sea, but some key results are also reported and verified for a more benign southern North Sea location. Time domain simulations for long crested and short crested waves over a spatial domain with dimension of a platform deck are performed, and relevant statistics for airgap assessment determined. Second order waves are simulated for the different cells in the (Hs, Tp) scatter diagram for Torsethaugen two-peak wave spectrum for long-crested and short-crested sea. A total of 1000 3-hour sea states are generated per cell, and time series generated for 160 spatial points under a platform deck. Short-term and long-term statistics are established for the maximum crest height as function of platform dimension; inline and transverse to the wave direction, and over the area. Results are given for the linear sea and for the second order time series. The annual q-probability estimates for the maximum crest height over area as a function of platform dimension is determined for a location at the Norwegian Continental Shelf by weighting the short-term statistics for the individual cells in the scatter diagram with the long-term probability of occurrence of the sea state. To reduce the number of numerical second order simulations, the effect of excluding cells that have a negligible effect on the long term extreme crest estimate is discussed. The percentiles in the distribution of maximum crest (over area) in design sea states that corresponds to the extreme values obtained from the long-term analysis are determined for long crested and short crested sea. The increase in the extreme crest over an area compared to the point in space estimate is estimated for both linear and second order surface elevation.


Sign in / Sign up

Export Citation Format

Share Document