Holistic water quality dynamics in rural artificial shallow water bodies

2018 ◽  
Vol 223 ◽  
pp. 676-684 ◽  
Author(s):  
Abul Hasan Md Badiul Alam ◽  
Koichi Unami ◽  
Masayuki Fujihara
2019 ◽  
Vol 62 (5) ◽  
pp. 1315-1324
Author(s):  
James A. McCarty

Abstract. Algae play an important role in the internal nutrient cycling of shallow lakes and coves. Algae of shallow water bodies have been shown to thrive and even lead to eutrophic conditions despite a lack of measurable quantities of biologically available phosphorus (P) in the water during summer months. To study how sediment P release and algal growth are connected, water and sediment samples were collected in a shallow eutrophic cove on Beaver Lake in northwest Arkansas. Water quality profiles depicting temperature, dissolved oxygen, nutrients, metals, and photic zone chlorophyll-a were collected weekly from 21 May to 10 July 2018 at three points in the cove: one shallow, one at the cove midpoint, and one at the deepest part of the cove. Cove sediment samples were collected at similar points as the water quality samples for equilibrium P concentration (EPCo) analysis, sediment core incubation, and sediment composition. EPCo for the sediments ranged from 0.024 to 0.027 mg L-1. Sediment cores exposed to aerobic conditions typical of shallow areas had P release rates ranging from 1.37 to 2.02 mg m-2 d-1. Concentrations of soluble reactive P (SRP) in the water column from the weekly water quality sampling averaged 0.002 ±0.003 mg L-1, and photic zone SRP concentrations averaged 0.002 ±0.004 mg L-1 for all sampling sites. The chlorophyll-a concentration increased from 10 to 40 µg L-1 during the period from 21 May to 25 June. When SRP << EPCo, conditions favor the release of SRP from sediments to the overlying water. This was confirmed with the aerobic sediment core incubation in which algal demand was controlled using dark conditions and the release rates were >1.37 mg L-1 d-1. Core aerobic release rates and EPCo conditions both confirmed the release of P under aerobic conditions; however, it appears that algal demand sustained low SRP conditions. This created a nutrient cycle in which algae imposed a nutrient gradient favoring P release by keeping SRP conditions below the EPCo. This study indicates that algal growth potential in shallow water bodies is not limited by SRP concentrations measured within the water column. Studies of shallow water bodies with low SRP concentrations and high productivity should look to the sediments as a source of P to fuel algal growth. Finally, these findings suggest that coves play an integral part in algal production and should not be overlooked when determining the overall P budget for a lake or reservoir. Keywords: Aerobic phosphorus release, Equilibrium phosphorus concentration, Sediment core incubation.


Author(s):  
I. Saakian ◽  
Aleksandr, Grigor’ev ◽  
E. Kravets ◽  
E. Rudakov ◽  
A. Faddeev ◽  
...  

Выполнен анализ действующей редакции Методики разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей , утвержденной приказом Минприроды России от 17 декабря 2007 г. 333, на предмет непротиворечивости и соответствия нормам водоохранного законодательства. Выявлена неопределенность применения Методики в условиях воздействия на качество воды природных и антропогенных факторов, не зависящих от конкретного водопользователя. Положения Методики противоречат принципам нормирования воздействия на водные объекты на основе наилучших доступных технологий, что было показано на примерах утвержденных технологических показателей содержания загрязняющих веществ в сточных водах различных отраслей промышленности. Анализ системы нормирования допустимых воздействий на водные объекты и географической дифференциации нормативов качества воды в пределах Российской Федерации вместе с системой целевых показателей качества воды также показал несоответствие Методики основным принципам водоохранного законодательства.The analysis of the current edition of the Methods of developing standards for permissible discharges of substances and microorganisms into water bodies for water users , approved by the Order of the Ministry of Natural Resources of Russia dated December 17, 2007 No. 333 for consilience and compliance with the regulations of the water protection legislation, is carried out. Uncertainty of the application of the Methods in the conditions of the impact of natural and anthropogenic factors that are independent of a specific water user on the quality of water has been identified. The provisions of the Methods contradict the principles of regulating the impact on water bodies based on the best available technologies shown on the examples of approved process indicators of the concentrations of various industrial pollutants in wastewater. An analysis of the system of regulating the permissible impact on water bodies and the geographical differentiation of water quality standards within the boundaries of the Russian Federation, together with the system of water quality targets, also showed that the Methods do not comply with the basic principles of the water protection legislation.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Takeshi Goda

The management and status of public water bodies in Japan is discussed. The environmental quality standards which have been set and the levels of compliance with these standards are shown. The water quality of Japanese rivers, lakes, reservoirs, wetlands and coastal waters is described, and eutrophication problems are mentioned. The effects of changes in population density and levels of recycling of industrial wastewaters on the quality of water bodies are discussed. Almost 75% of industrial wastewater is now recycled. Per capita availability of freshwater in Japan is comparatively low, and the construction of 530 dams, in addition to the 2393 dams already in operation, is planned. Irrigation effluents from paddy fields are a major factor which influences river water quality in Japan. The improvement of water quality using various methods is discussed.


1989 ◽  
Vol 21 (12) ◽  
pp. 1821-1824
Author(s):  
M. Suzuki ◽  
K. Chihara ◽  
M. Okada ◽  
H. Kawashima ◽  
S. Hoshino

A computer program based on expert system software was developed and proposed as a prototype model for water management to control eutrophication problems in receiving water bodies (Suzuki etal., 1988). The system has several expert functions: 1. data input and estimation of pollution load generated and discharged in the river watershed; 2. estimation of pollution load run-off entering rivers; 3. estimation of water quality of receiving water bodies, such as lakes; and 4. assisting man-machine dialog operation. The program can be used with MS-DOS BASIC and assembler in a 16 bit personal computer. Five spread sheets are utilized in calculation and summation of the pollutant load, using multi-windows. Partial differential equations for an ecological model for simulation of self-purification in shallow rivers and simulation of seasonal variations of water quality in a lake were converted to computer programs and included in the expert system. The simulated results of water quality are shown on the monitor graphically. In this study, the expert system thus developed was used to estimate the present state of one typical polluted river basin. The river was the Katsura, which flows into Lake Sagami, a lake dammed for water supply. Data which had been actually measured were compared with the simulated water quality data, and good agreement was found. This type of expert system is expected to be useful for water management of a closed water body.


2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Kees J. M. Kramer ◽  
Frank Sleeuwaert ◽  
Guy Engelen ◽  
Christin Müller ◽  
Werner Brack ◽  
...  

Abstract Chemical pollution of water bodies is a complex problem around the globe. When described by the extremes of the range of problem definitions, water bodies can be chemically polluted by a single compound that is emitted from a point source or an incidental spill, or by chronic diffuse emissions from local and upstream land uses. The resulting mixture exposures can vary in space and time, e.g. due to the use of pesticides in the crop growing season. The environmental management objectives are commonly to protect and restore surface waters against human influences. Currently, chemical pollution is globally judged for a selected set of compounds, by judging each of these individually in comparison with protective environmental quality standards. Research has provided a novel assessment paradigm (solution-focused risk assessment) and novel data, measurement methods and models to improve on current practices. Their adoption and application require establishing novel linkages between the diverse problem definitions and the novel approaches. That would assist water quality professionals to select the most effective option or options to protect and restore water quality. The present paper introduces the RiBaTox (River Basin Specific Toxicants assessment and management) web tool. It consists of short descriptions of the novel approaches (made available as Additional file 1) and a decision tree for end-users to select those. The overview of novel approaches collated in RiBaTox is relevant for end-users ranging from local water quality experts up till strategic policy developers. Although RiBaTox was developed in the context of European water quality problems, the methods provided by RiBaTox are relevant for users from (inter)national to local scales. This paper is part of a series of Policy Briefs from the EU-FP7 project SOLUTIONS (http://www.solutions-project.eu), which provide backgrounds on chemical pollution of surface waters and policy practices and proposed improvements.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Alberto Celma ◽  
Geeta Mandava ◽  
Agneta Oskarsson ◽  
Juan Vicente Sancho ◽  
Lubertus Bijlsma ◽  
...  

Abstract Background Fresh water bodies represent less than 1% of overall amount of water on earth and ensuring their quality and sustainability is pivotal. Although several campaigns have been performed to monitor the occurrence of micropollutants by means of chemical analysis, this might not cover the whole set of chemicals present in the sample nor the potential toxic effects of mixtures of natural and anthropogenic chemicals. In this sense, by selecting relevant toxicity endpoints when performing in vitro bioanalysis, effect-based methodologies can be of help to perform a comprehensive assessment of water quality and reveal biological activities relevant to adverse health effects. However, no prior bioanalytical study was performed in wetland water samples from the Spanish Mediterranean coastline. Methods Eleven samples from relevant water bodies from the Spanish Mediterranean coastline were collected to monitor water quality on 8 toxicity endpoints. Aryl hydrocarbon receptor (AhR), androgenicity (AR+ and AR−), estrogenicity (ER+ and ER−), oxidative stress response (Nrf2) and vitamin D receptor (VDR+ and VDR−) reporter gene assays were evaluated. Results AhR was the reporter gene assay showing a more frequent response over the set of samples (activated by 9 out of 11 samples), with TCDD-eq in the range 7.7–22.2 pM. For AR, ER and VDR assays sporadic activations were observed. Moreover, no activity was observed on the Nrf2 reporter gene assay. Wastewater and street runaway streams from Valencia could be responsible for enhanced activities in one of the water inputs in the Natural Park ‘L’Albufera’. Conclusions Water quality of relevant wetlands from the Spanish Mediterranean coastline has been evaluated. The utilization of a panel of 5 different bioassays to cover for different toxicity endpoints has demonstrated to be a good tool to assess water quality.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 433
Author(s):  
Laima Česonienė ◽  
Midona Dapkienė ◽  
Petras Punys

Hydropower plants produce renewable and sustainable energy but affect the river’s physico-chemical characteristics and change the abundance and composition of the aquatic organisms. The impact of large HPPs on the ecological conditions of surface water bodies have been extensively studied, but less attention has been paid to environmental impact studies of small hydropower plants (SHPs). The impact of hydropeaking on both the river flow regime and ecosystems has been well-studied for peaking mode plants, mainly medium to large-sized ones. However, for small hydroelectric power plants, and especially for those in lowland rivers, the available information on water quality, benthic macroinvertebrates communities and fish abundance, and biomass is not sufficient. Ten small hydropower plants were selected, and the ecological status of water bodies was assessed in different parts of Lithuania. The studies were performed at the riverbed upstream from the SHPs, where the hydrological regime has not changed, and downstream from the SHPs. It was found that the small hydropower plants do not affect the physico-chemical values of the water quality indicators. This study demonstrated that the total number of benthic macroinvertebrates taxa (TS) is influenced by the concentration of nitrogen and suspended solids, the water flow, the river area, and the current speed; the number of EPT (Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies)) taxa is influenced by the concentration of nitrogen and suspended solids. The studied indicators do not have a significant impact on biomass. The SHPs affect the fish abundance and biomass. The Lithuanian fish index (LFI) is influenced by the average depth and area of the river. Some SHPs operating in lowland areas may yield somewhat significant hydrograph ramping but more detailed investigation is needed to support the significance of this impact on the biological indices.


2010 ◽  
Vol 44 (16) ◽  
pp. 4805-4811 ◽  
Author(s):  
Shih-Wei Huang ◽  
Bing-Mu Hsu ◽  
Shu-Fen Wu ◽  
Cheng-Wei Fan ◽  
Feng-Cheng Shih ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6565
Author(s):  
Shama E. Haque

Phosphorus is an essential component of modern agriculture. Long-term land application of phosphorous-enriched fertilizers and animal manure leads to phosphorus accumulation in soil that may become susceptible to mobilization via erosion, surface runoff and subsurface leaching. Globally, highly water-soluble phosphorus fertilizers used in agriculture have contributed to eutrophication and hypoxia in surface waters. This paper provides an overview of the literature relevant to the advances in phosphorous management strategies and surface water quality problems in the U.S. Over the past several decades, significant advances have been made to control phosphorus discharge into surface water bodies of the U.S. However, the current use of phosphorus remains inefficient at various stages of its life cycle, and phosphorus continues to remain a widespread problem in many water bodies, including the Gulf of Mexico and Lake Erie. In particular, the Midwestern Corn Belt region of the U.S. is a hotspot of phosphorous fertilization that has resulted in a net positive soil phosphorous balance. The runoff of phosphorous has resulted in dense blooms of toxic, odor-causing phytoplankton that deteriorate water quality. In the past, considerable attention was focused on improving the water quality of freshwater bodies and estuaries by reducing inputs of phosphorus alone. However, new research suggests that strategies controlling the two main nutrients, phosphorus and nitrogen, are more effective in the management of eutrophication. There is no specific solution to solving phosphorus pollution of water resources; however, sustainable management of phosphorus requires an integrated approach combining at least a reduction in consumption levels, source management, more specific regime-based nutrient criteria, routine soil fertility evaluation and recommendations, transport management, as well as the development of extensive phosphorus recovery and recycling programs.


Sign in / Sign up

Export Citation Format

Share Document