Optimizing pre-treatment conditions for anaerobic co-digestion of food waste and sewage sludge

2019 ◽  
Vol 249 ◽  
pp. 109397 ◽  
Author(s):  
Wonbae Lee ◽  
Seyong Park ◽  
Fenghao Cui ◽  
Moonil Kim
2020 ◽  
Vol 38 (5) ◽  
pp. 546-553
Author(s):  
Seyong Park ◽  
Seong Kuk Han ◽  
Eunhey Song ◽  
Ho Kim ◽  
Moonil Kim ◽  
...  

Anaerobic digestion (AD) is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of hydrothermal pre-treatment (HTP) for a food waste and sewage sludge mixture (FW–SS mixture) as pre-treatment of co-digestion. The results of the capillary suction time, time to filter, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of the FW–SS mixture to enhance the solubilization of organic solids. A maximum increase in biogas production of 50% is achieved with a HTP temperature of 140oC. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall AD process for wastewater treatment.


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120197
Author(s):  
Lijie Cheng ◽  
Ningbo Gao ◽  
Cui Quan ◽  
Hua Chu ◽  
Guojuan Wang

2015 ◽  
Vol 2015 (15) ◽  
pp. 3796-3806
Author(s):  
Robert Morton ◽  
James Ecker ◽  
Robert Hickey ◽  
Daniel Gary ◽  
Andy Lee ◽  
...  

2021 ◽  
Vol 104 ◽  
pp. 430-443
Author(s):  
Tharindu Ritigala ◽  
Hailu Demissie ◽  
Yanlin Chen ◽  
Jiaxi Zheng ◽  
Libing Zheng ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vahideh Yari ◽  
Zeynab Roein ◽  
Atefeh Sabouri

AbstractThe Anemone genus is a tuberous geophyte which undergoes a dormancy period during unfavorable environmental conditions for growth. Five species of the Anemone genus naturally grow in several regions of Iran. The diverse uses of Anemone in gardens for landscaping, cut flowers, and potted plants indicate its high ornamental potential. Its dormancy and flowering are influenced by various factors. The present paper was conducted to explore the flowering behavior of Anemone accessions in response to different pre-treatments. For this purpose, tubers of 18 Anemone accessions (A. coronaria and A. biflora) were collected from natural regions of six provinces in Iran. These tubers were subjected to different conditions of non-chilling (20 °C, 90 days), chilling (4 °C, 90 days), GA3 (150 mgL-1; 24 h), and 5-azaCitidine (5-azaC; 40 µM; 24 h) prior to the cultivation. Most of the accessions were able to enter the flowering stage without chilling. The shortest period for the sprouting of tubers (16.89 ± 7.83 days) belonged to 5-azaC pre-treatment. In addition, this treatment accelerated the flowering time (about 30 days earlier) and diameter of the stem, bud, and flower. Morphological characteristics, such as stem height, number of leaves, bud, and petal and the longevity of flowers on the plant were significantly affected by GA3 pre-treatment. Our results indicated a positive correlation between flower length, stem height, and stem diameter with flower longevity under different pre-treatment conditions. The present study demonstrated that accessions Anm3, Anm12, and Anm18 had ornamental values higher than the population mean across four conditions.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2021 ◽  
Author(s):  
Hongbo Liu ◽  
Xinkang Wang ◽  
Yueying Fang ◽  
Wenjia Lai ◽  
Suyun Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document