Preparation and characterisation of a novel emulsifier system based on glycerol monooleate by spray-drying

2020 ◽  
Vol 285 ◽  
pp. 110100 ◽  
Author(s):  
Chia Chun Loi ◽  
Graham T. Eyres ◽  
Pat Silcock ◽  
E. John Birch
Author(s):  
Martha L. Taboada ◽  
Theresia Heiden‐Hecht ◽  
Monika Brückner‐Gühmann ◽  
Heike P. Karbstein ◽  
Stephan Drusch ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 47
Author(s):  
Martha Taboada ◽  
Nico Leister ◽  
Heike Karbstein ◽  
Volker Gaukel

Spray drying of whey protein-based emulsions is a common task in food engineering. Lipophilic, low molecular weight emulsifiers including lecithin, citrem, and mono- and diglycerides, are commonly added to the formulations, as they are expected to improve the processing and shelf life stability of the products. During the atomization step of spray drying, the emulsions are subjected to high stresses, which can lead to breakup and subsequent coalescence of the oil droplets. The extent of these phenomena is expected to be greatly influenced by the emulsifiers in the system. The focus of this study was therefore set on the changes in the oil droplet size of whey protein-based emulsions during atomization, as affected by the addition of low molecular weight emulsifiers. Atomization experiments were performed with emulsions stabilized either with whey protein isolate (WPI), or with combinations of WPI and lecithin, WPI and citrem, and WPI and mono- and diglycerides. The addition of lecithin promoted oil droplet breakup during atomization and improved droplet stabilization against coalescence. The addition of citrem and of mono- and diglycerides did not affect oil droplet breakup, but greatly promoted coalescence of the oil droplets. In order to elucidate the underlying mechanisms, measurements of interfacial tensions and coalescence times in single droplets experiments were performed and correlated to the atomization experiments. The results on oil droplet breakup were in good accordance with the observed differences in the interfacial tension measurements. The results on oil droplet coalescence correlated only to a limited extent with the results of coalescence times of single droplet experiments.


2015 ◽  
Vol 30 (5) ◽  
pp. 487 ◽  
Author(s):  
ZHANG Le ◽  
ZHOU Tian-Yuan ◽  
YANG Hao ◽  
QIAO Xue-Bin ◽  
WANG Zhong-Ying ◽  
...  

Author(s):  
Ewa Domian ◽  
Ewa Świrydow ◽  
Jan Cenkier
Keyword(s):  

Author(s):  
Kusuma P. ◽  
Syukri Y ◽  
Sholehuddin F. ◽  
Fazzri N. ◽  
Romdhonah . ◽  
...  

The most efficient tablet processing method is direct compression. For this method, the filler-binder can be made by coprocessing via spray drying method. The purpose of this study was to investigate the effect of spray dried co-processing on microcrystalline cellulose (MCC) PH 101, lactose and Kollidon® K 30 as well as to define the optimum proportions. Spray dried MCC PH 101, lactose, and Kollidon® K 30 were varied in 13 different mixture design proportions to obtain compact, free-flowing filler-binder co-processed excipients (CPE). Compactibility and flow properties became the key parameters to determine the optimum proportions of CPE that would be compared to their physical mixtures. The result showed that the optimum proportion of CPE had better compactibility and flow properties than the physical mixtures. The optimum CPE, consisting of only MCC PH 101 and Kollidon® K 30 without lactose, that were characterized using infrared spectrophotometer, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM) indicated no chemical change therein. Therefore, this study showed that spray dried MCC PH 101, lactose and Kollidon® K 30 could be one of the filler-binder alternatives for direct compression process.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Prasetiyadi Prasetiyadi ◽  
Wiharja Wiharja ◽  
Sri Wahyono

Proses pembakaran sampah kota melalui insinerator akan menghasilkan uap panas yang bisa dimanfaatkan  untuk membangkitkan energi listrik, akan tetapi pada proses ini juga menghasilkan output berupa flue gas yang didominasi oleh partikel (fly ash) dan gas beracun seperti: HCl, SO2, NOx, HF, Hg, Cd dan Dioxin. Sebelum dibuang ke udara bebas, flue gas tersebut harus diolah agar memenuhi baku mutu lingkungan. Teknologi penanganan partikel dan gas polutan tersedia dan dapat dibuat dengan berbagai kapasitas. Untuk menangani flue gas dari insinerator sampah digunakan Quencher untuk menekan laju pembentukan kembali dioksin dan furan setelah proses pembakaran,  Spray Drying Absorption (SDA) untuk mengikat gas asam dan  logam berat serta bag filter untuk menangkap partikel. Selain itu digunakan ID Fan dan Cerobong Asap untuk pengatasi pressure drop yang terjadi akibat pengoperasian peralatan APC dan melepas ke udara.


2019 ◽  
Vol 4 (2) ◽  
pp. 285-294
Author(s):  
Michrun Nisa ◽  
◽  
Agustina Ma'tang Parinding ◽  
Abdul Halim Umar ◽  
Nur Khairi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document