A mechanistic approach to model the breakdown of solid food during chewing

2021 ◽  
pp. 110871
Author(s):  
Muhammad Syahmeer How ◽  
Jim R. Jones ◽  
Marco P. Morgenstern ◽  
Eli Gray-Stuart ◽  
John E. Bronlund
2018 ◽  
Author(s):  
Sandepan Maity ◽  
Robert Flowers

Despite the broad utility and application of SmI<sub>2</sub>in synthesis, the reagent is used in stoichiometric amounts and has a high molecular weight, resulting in a large amount of material being used for reactions requiring one or more equivalents of electrons. We report mechanistic studies on catalytic reactions of Sm(II) employing a terminal magnesium reductant and trimethyl silyl chloride in concert with a non-coordinating proton donor source. Reactions using this approach permitted reductions with as little as 1 mol% Sm. The mechanistic approach enabled catalysis employing HMPA as a ligand, facilitating the development of catalytic Sm(II) 5-<i>exo</i>-<i>trig </i>ketyl olefin cyclization reactions.


Author(s):  
Sridhar Muthusami ◽  
Ilangovan Ramachandran ◽  
Sneha Krishnamoorthy ◽  
Yuvaraj Sambandam ◽  
Satish Ramalingam ◽  
...  

: The development of colorectal cancer (CRC) is a multi-stage process. The inflammation of the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease (CD) is often regarded as the initial trigger for the development of CRC. Many cytokines such as tumor necrosis factor alpha (TNF-α) and several interleukins (ILs) are known to exert proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers, including CRC through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown. Consolidating the published results and offering perspective solutions to circumvent CRC, the current review is focused on the role of miRNAs and their regulation in the development of CRC. We have also discussed the model systems adapted by researchers to delineate the role of miRNAs in inflammation-associated CRC.


1999 ◽  
Vol 64 (8) ◽  
pp. 1274-1294 ◽  
Author(s):  
Radek Pohl ◽  
Stanislav Böhm ◽  
Josef Kuthan

The oxidations of the title perchlorates, bearing the sterically diverse 6'-substituents (H, Me, Et, i-Pr, n-Bu, t-Bu and Ph) in two series with the same 4-substituents (Ph and t-Bu) lead to pairs of isomeric 3',5-disubstituted (Z)-1'-phenyl-3'-(2-phenylimidazo[1,2-a]pyridin-3-yl)prop-2'- en-1'-ones and 3,6'-disubstituted [5-phenyl-1-(6'-pyridin-2'-yl)-1H-pyrrol-2-yl](phenyl)methanones except where the both variable substituents are t-Bu and then only pyrrolic product is formed. Considering steric interactions of the substituents in some intermediate and/or transition states a multistep mechanism for the oxidative transformation is proposed and supported by model PM3-PECI calculations of some radical intermediates.


Author(s):  
R.J. Fallon ◽  
J.R. Twigge

The primary aim of the calf rearer is to ensure a successful transition from non ruminant to ruminant status while achieving rapid growth and an early intake of solid food. Newbold, Blake and Hagges (1991), found that increasing the concentration of ME in either the starter or milk replacer will not promote more rapid growth, but will simply reduce the rate of starter consumption. This present study investigated the extent to which the energy density of a calf starter ration affected starter intake and liveweight gain in calves receiving a fixed allowance of a high energy milk replacer with ad libitum access to solid calf starter rations.


Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.


Author(s):  
Patricio Javier Pereyra ◽  
Paula de la Barra ◽  
Juan Francisco Saad ◽  
Marianela Gastaldi ◽  
Andrea Evangelina Arcángel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document