The effect of homogenization and heat treatment on gelation of whey proteins in emulsions

2021 ◽  
pp. 110915
Author(s):  
Ewa Domian ◽  
Diana Mańko-Jurkowska
Keyword(s):  
2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


2018 ◽  
Vol 112 ◽  
pp. 74-82 ◽  
Author(s):  
Mina Sobhaninia ◽  
Ali Nasirpour ◽  
Mohammad Shahedi ◽  
Abdolkhalegh Golkar ◽  
Stephane Desobry

2001 ◽  
Vol 68 (3) ◽  
pp. 471-481 ◽  
Author(s):  
CATHERINE SCHORSCH ◽  
DEBORAH K. WILKINS ◽  
MALCOLM G. JONES ◽  
IAN T. NORTON

The aim of the present work was to investigate the role of whey protein denaturation on the acid induced gelation of casein. This was studied by determining the effect of whey protein denaturation both in the presence and absence of casein micelles. The study showed that milk gelation kinetics and gel properties are greatly influenced by the heat treatment sequence. When the whey proteins are denatured separately and subsequently added to casein micelles, acid-induced gelation occurs more rapidly and leads to gels with a more particulated microstructure than gels made from co-heated systems. The gels resulting from heat-treatment of a mixture of pre-denatured whey protein with casein micelles are heterogeneous in nature due to particulates formed from casein micelles which are complexed with denatured whey proteins and also from separate whey protein aggregates. Whey proteins thus offer an opportunity not only to control casein gelation but also to control the level of syneresis, which can occur.


1974 ◽  
Vol 37 (5) ◽  
pp. 244-249 ◽  
Author(s):  
C. J. Washam ◽  
G. W. Reinbold ◽  
E. R. Vedamuthu ◽  
R. Jorgensen

Milk proteins were subjected to treatment with various levels of benzoyl peroxide, with and without heating at 60 C for 2 h. Heating had a pronounced effect on whey proteins, but polyacrylamide gel electrophoresis revealed changes in proteins not attributable to heat alone. The effect on proteins was reflected in an increased tendency for the benzoyl peroxide-heat treated cheeses to expel moisture during leakage tests. Use of 17.8 ppm benzoyl peroxide resulted in a markedly whiter cheese than that made using 5.9 ppm and reflectance studies indicated this to be true even when no heat treatment accompanied the benzoyl peroxide. Use of benzoyl peroxide in the bleaching process did not decrease mold development in ripening loaves nor was acid production by lactic cultures diminished. In addition, proteolysis of milk proteins by rennet was not reduced by the presence of benzoyl peroxide.


1993 ◽  
Vol 60 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Theo J. M. Jeurnink ◽  
Kees G. De Kruif

SummarySkim milk was heated at 85 °C for different holding times. As a result of such heating, whey proteins, in particular β-lactoglobulin, denatured and associated with casein micelles. This led to an increase in size of the casein micelles but also to a different interaction between them. Both these changes could be described by using a quantitative model which was developed for the viscosity of so-called adhesive hard spheres. We applied the model successfully to skim milk and were able to describe on a quantitative basis the changes due to the heat treatment of milk. It was shown that after heating the casein micelles became larger and acquired a mutual attraction. The unfolding of the whey proteins and their subsequent association with the casein micelles appeared to be responsible for these changes. How this reaction influences the fouling of heat exchangers is discussed.


1996 ◽  
Vol 63 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Andrew J. R. Law

SummaryThe effects of heat treatment and subsequent acidification of milk on the distribution of proteins, Ca and Pi, between the serum and micellar phases were examined using ultracentrifugation. After heating milk at 85 °C for 10 min, and storing for 22 h at 4, 20 or 30 °C, there was a marked increase in the concentration of κ-casein in the serum. At 4 and 20 °C there was also slightly more β-casein in the serum from heat-treated milk than in that from the corresponding raw milk. The whey proteins were extensively denatured, and were almost equally distributed between the supernatants and micellar pellets. After storage for 22 h the distribution of Ca and Pi between soluble and colloidal phases in heat-treated milk was similar to that in raw milk. After acidifying heat-treated milk by the addition of glucono-δ-lactone and storing for 22 h at 4, 20 or 30 °C there was progressive solubilization of colloidal calcium phosphate with decreasing pH, and at pH 5·0 almost all of the Ca and Pi was present in the serum. At 20 °C, and even more so at 4 °C, serum concentrations of the individual caseins increased considerably with decreasing pH, reaching maximum levels of about 25 and 40% of the total casein at pH 5·7 and 5·5 respectively, and then decreasing rapidly at lower pH. Compared with raw milk, maximum dissociation in heat-treated milks stored at 4 and 20 °C occurred at higher pH, and the overall levels of dissociation of individual caseins from the micelles were lower. At 30 °C, the concentrations of individual caseins in the serum of heat-treated milk decreased steadily as the pH was reduced, and did not show the slight increase found previously for raw milk. The role of the denatured whey proteins in interacting with κ-casein and in promoting aggregation of the micelles on acidification is discussed.


2018 ◽  
Vol 71 (4) ◽  
pp. 954-965 ◽  
Author(s):  
Henrike Moeller ◽  
Dierk Martin ◽  
Katrin Schrader ◽  
Wolfgang Hoffmann ◽  
Stefanie Pargmann ◽  
...  

1971 ◽  
Vol 38 (3) ◽  
pp. 393-401 ◽  
Author(s):  
J. G. Zadow

SummaryWhen the pH of milk was varied within the range 7·1 to 6·3 by addition of acid or alkali or through bacterial action, the reflectance of the milk after subsequent ultra-heat-treatment (UHT) was at a maximum of about pH 6·70. Below this value the reflectance dropped rapidly with decrease in pH. The cause of this decrease was the development of increasing amounts of sediment in the product. At pH 6·4–6·5, at least 90% of the casein and 40% of the whey proteins had been precipitated. The addition of 0·1% sodium di-hydrogen phosphate or 0·1% sodium citrate to the raw milk prevented the formation of the sediment. The role of calcium appeared important as small additions of calcium chloride or EDTA altered the patterns of sediment formation and reflectance with changing pH. Addition of 0·3% EDTA prevented sediment formation as the pH dropped.


2013 ◽  
Vol 2 (6) ◽  
pp. 55 ◽  
Author(s):  
Dimitris Petridis ◽  
Georgia Dimitreli ◽  
Stella Chrysalidou ◽  
Pantelina Akakiadou

<p>The effects of fat content and the supplementation of milk with Sodium Caseinates (SCN) and Whey Proteins Concentrates (WPC) on the rheological and sensory properties of stirred yogurt made from buffalo milk were investigated. Whether the heat treatment of the milk affected the rheological behavior and the sensory characteristics of the samples was also evaluated. Principal Component Analysis (PCA) was used to assess in detail the relative contribution of whey proteins, caseins and fat on the rheological properties and sensory characteristics of the samples. Furthermore, it related the instrumental and objective sensory data to consumer perception (hedonic response of non-trained panelists). The objective acidity and white color intensity were positively correlated and increased with increasing casein content. Fat interacted synergistically with caseins to increase all the hedonic attributes, apart from odor. As far as rheological properties are concerned, elastic modulus (G'), instantaneous elasticity (G<sub>g</sub>), retarded elasticity (G<sub>R</sub>) and Newtonian viscosity (?<sub>0</sub>) were positively correlated with increasing casein content. However, tan ? was negatively correlated with the aforesaid attributes and increased with increasing fat content. Whey proteins in the presence of fat determined the magnitude of flow behavior index (n). The lactic acid concentration (%) and the b component of color (yellow color intensity) were affected positively by SCN and WPC addition but in the absence of fat. In all regression equations the effect of process temperature was found to be insignificant. Finally, the consumer-optimized composition of the fat and the added SCN can be used to formulate a marketable product.</p>


Sign in / Sign up

Export Citation Format

Share Document