Whole-genome sequences shed light onto the demographic history and contemporary genetic erosion of free-ranging jaguar (Panthera onca) populations

Author(s):  
Gustavo P. Lorenzana ◽  
Henrique V. Figueiró ◽  
Christopher B. Kaelin ◽  
Gregory S. Barsh ◽  
Jeremy Johnson ◽  
...  
Author(s):  
Gustavo Lorenzana ◽  
Henrique Figueiró ◽  
Christopher Kaelin ◽  
Greg Barsh ◽  
Jeremy Johnson ◽  
...  

The vast amount of data contained in a single genome represents a detailed record of past events in that lineage and may forecast its evolutionary potential in the face of environmental changes. Here we employed whole-genome sequence (WGS) data to infer the demographic history and assess signals of recent inbreeding in jaguar (Panthera onca) populations. We analyzed whole genomes from 13 individuals (nine of which are reported here for the first time) sampled in seven different biomes across the species’ range, including its northernmost extreme in the Mexico/USA border region. We modelled demographic history using the PSMC method, and analyzed long runs of homozygosity (ROH) to assess signals of population bottlenecks and inbreeding. PSMC plots were very consistent among individuals, indicating that the jaguar lineage had an effective population size of up 100,000 individuals ca. 1 million years ago, then sharply declined and rebounded during the Late Pleistocene, followed by a more gradual decline in the last 40,000 years. This decline was more pronounced in the North/Central American genomes, likely reflecting population bottlenecks during the south-north colonization towards the edge of the species’ current range. The ROH analysis revealed a relatively small burden for most jaguars, indicating a recent history of outbreeding and large-scale connectivity among regional populations. However, northern range-edge individuals and those from severely fragmented populations showed signals of recent bottlenecks and, in the latter case, inbreeding. Our results illustrate the power of WGS data to survey and monitor the genetic erosion triggered by anthropogenic habitat fragmentation.


2019 ◽  
Author(s):  
Ke Wang ◽  
Iain Mathieson ◽  
Jared O’Connell ◽  
Stephan Schiffels

AbstractThe genetic diversity of humans, like many species, has been shaped by a complex pattern of population separations followed by isolation and subsequent admixture. This pattern, reaching at least as far back as the appearance of our species in the paleontological record, has left its traces in our genomes. Reconstructing a population’s history from these traces is a challenging problem. Here we present a novel approach based on the Multiple Sequentially Markovian Coalescent (MSMC) to analyse the population separation history. Our approach, called MSMC-IM, uses an improved implementation of the MSMC (MSMC2) to estimate coalescence rates within and across pairs of populations, and then fits a continuous Isolation-Migration model to these rates to obtain a time-dependent estimate of gene flow. We show, using simulations, that our method can identify complex demographic scenarios involving post-split admixture or archaic introgression. We apply MSMC-IM to whole genome sequences from 15 worldwide populations, tracking the process of human genetic diversification. We detect traces of extremely deep ancestry between some African populations, with around 1% of ancestry dating to divergences older than a million years ago.Author SummaryHuman demographic history is reflected in specific patterns of shared mutations between the genomes from different populations. Here we aim to unravel this pattern to infer population structure through time with a new approach, called MSMC-IM. Based on estimates of coalescence rates within and across populations, MSMC-IM fits a time-dependent migration model to the pairwise rate of coalescences. We implemented this approach as an extension to existing software (MSMC2), and tested it with simulations exhibiting different histories of admixture and gene flow. We then applied it to the genomes from 15 worldwide populations to reveal their pairwise separation history ranging from a few thousand up to several million years ago. Among other results, we find evidence for remarkably deep population structure in some African population pairs, suggesting that deep ancestry dating to one million years ago and older is still present in human populations in small amounts today.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1017
Author(s):  
Hirohisa Mekata ◽  
Tomohiro Okagawa ◽  
Satoru Konnai ◽  
Takayuki Miyazawa

Bovine foamy virus (BFV) is a member of the foamy virus family in cattle. Information on the epidemiology, transmission routes, and whole-genome sequences of BFV is still limited. To understand the characteristics of BFV, this study included a molecular survey in Japan and the determination of the whole-genome sequences of 30 BFV isolates. A total of 30 (3.4%, 30/884) cattle were infected with BFV according to PCR analysis. Cattle less than 48 months old were scarcely infected with this virus, and older animals had a significantly higher rate of infection. To reveal the possibility of vertical transmission, we additionally surveyed 77 pairs of dams and 3-month-old calves in a farm already confirmed to have BFV. We confirmed that one of the calves born from a dam with BFV was infected. Phylogenetic analyses revealed that a novel genotype was spread in Japan. In conclusion, the prevalence of BFV in Japan is relatively low and three genotypes, including a novel genotype, are spread in Japan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Myat Htut Nyunt ◽  
Hnin Ohnmar Soe ◽  
Kay Thi Aye ◽  
Wah Wah Aung ◽  
Yi Yi Kyaw ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigated the mutational and phylogenetic analysis of 30 whole-genome sequences for the virus's genomic characteristics in the specimens collected in the early phase of the pandemic (March–June, 2020) and the sudden surge of local transmission (August–September, 2020). The four samples in the early phase of infection were B.6 lineage and located within a clade of the samples collected at the same time in Singapore and Malaysia, while five returnees by rescue flights showed the lineage B. 1.36.1 (three from India), B.1.1 (one from India) and B.1.80 (one from China). However, there was no evidence of local spread from these returnees. Further, all 19 whole-genome sequences collected in the sudden surge of local transmission showed lineage B.1.36. The surge of the second wave on SARS-CoV-2 infection was linked to the single-introduction of a variant (B.1.36) that may result from the strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.


2021 ◽  
Vol 20 ◽  
pp. 100649
Author(s):  
Xiaoran Zhao ◽  
Ruijun Li ◽  
Huifeng Dang ◽  
Luo Wang ◽  
Songzhe Fu ◽  
...  

2017 ◽  
Vol 5 (28) ◽  
Author(s):  
Sara Jones ◽  
Raji Prasad ◽  
Anjana S. Nair ◽  
Sanjai Dharmaseelan ◽  
Remya Usha ◽  
...  

ABSTRACT We report here the whole-genome sequence of six clinical isolates of influenza A(H1N1)pdm09, isolated from Kerala, India. Amino acid analysis of all gene segments from the A(H1N1)pdm09 isolates obtained in 2014 and 2015 identified several new mutations compared to the 2009 A(H1N1) pandemic strain.


Sign in / Sign up

Export Citation Format

Share Document