scholarly journals Molecular Epidemiology and Whole-Genome Analysis of Bovine Foamy Virus in Japan

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1017
Author(s):  
Hirohisa Mekata ◽  
Tomohiro Okagawa ◽  
Satoru Konnai ◽  
Takayuki Miyazawa

Bovine foamy virus (BFV) is a member of the foamy virus family in cattle. Information on the epidemiology, transmission routes, and whole-genome sequences of BFV is still limited. To understand the characteristics of BFV, this study included a molecular survey in Japan and the determination of the whole-genome sequences of 30 BFV isolates. A total of 30 (3.4%, 30/884) cattle were infected with BFV according to PCR analysis. Cattle less than 48 months old were scarcely infected with this virus, and older animals had a significantly higher rate of infection. To reveal the possibility of vertical transmission, we additionally surveyed 77 pairs of dams and 3-month-old calves in a farm already confirmed to have BFV. We confirmed that one of the calves born from a dam with BFV was infected. Phylogenetic analyses revealed that a novel genotype was spread in Japan. In conclusion, the prevalence of BFV in Japan is relatively low and three genotypes, including a novel genotype, are spread in Japan.

2013 ◽  
Vol 164 (7) ◽  
pp. 718-728 ◽  
Author(s):  
Mansi Verma ◽  
Devi Lal ◽  
Jaspreet Kaur ◽  
Anjali Saxena ◽  
Jasvinder Kaur ◽  
...  

Author(s):  
Francisco Díez-Fuertes ◽  
María Iglesias-Caballero ◽  
Javier García Pérez ◽  
Sara Monzón ◽  
Pilar Jiménez ◽  
...  

SARS-CoV-2 whole-genome analysis has identified five large clades worldwide, emerged in 2019 (19A and 19B) and in 2020 (20A, 20B and 20C). This study aims to analyze the diffusion of SARS-CoV-2 in Spain using maximum likelihood phylogenetic and Bayesian phylodynamic analyses. The most recent common ancestor (MRCA) of the SARS-CoV-2 pandemic was estimated in Wuhan, China, around November 24, 2019. Phylogenetic analyses of the first 12,511 SARS-CoV-2 whole genome sequences obtained worldwide, including 290 from 11 different regions of Spain, revealed 62 independent introductions of the virus in the country. Most sequences from Spain were distributed in clades characterized by D614G substitution in S gene (20A, 20B and 20C) and L84S substitution in ORF8 (19B) with 163 and 118 sequences, respectively, with the remaining sequences branching in 19A. A total of 110 (38%) sequences from Spain grouped in four different monophyletic clusters of 20A clade (20A-Sp1 and 20A-Sp2) and 19B clade (19B-Sp1 and 19B-Sp2) along with sequences from 29 countries worldwide. The MRCA of 19A-Sp1, 20A-Sp1, 19A-Sp2 and 20A-Sp2 clusters were estimated in Spain around January 21 and 29, and February 6 and 17, 2020, respectively. The prevalence of 19B clade in Spain (40%) was by far higher than in any other European country during the first weeks of the epidemic, probably by a founder effect. However, this variant was replaced by G614-bearing viruses in April. In vitro assays showed an enhanced infectivity of pseudotyped virions displaying G614 substitution compared with D614, suggesting a fitness advantage of D614G. IMPORTANCE Multiple SARS-CoV-2 introductions have been detected in Spain and at least four resulted in the emergence of locally transmitted clusters originated not later than mid-February, with further dissemination to many other countries around the world and a few weeks before the explosion of COVID-19 cases detected in Spain during the first week of March. The majority of the earliest variants detected in Spain branched in 19B clade (D614 viruses), which was the most prevalent clade during the first weeks of March, pointing to a founder effect. However, from mid-March to June, 2020, G614-bearing viruses (20A, 20B and 20C clades) overcame D614 variants in Spain, probably as a consequence of an evolutionary advantage of this substitution in the spike protein. A higher infectivity of G614-bearing viruses compared to D614 variants was detected, suggesting that this substitution in SARS-CoV-2 spike protein could be behind the variant shift observed in Spain.


2011 ◽  
Vol 92 (9) ◽  
pp. 2201-2208 ◽  
Author(s):  
Souvik Ghosh ◽  
Noriaki Adachi ◽  
Zipporah Gatheru ◽  
James Nyangao ◽  
Dai Yamamoto ◽  
...  

Although G2P[4] rotaviruses are common causes of acute childhood diarrhoea in Africa, to date there are no reports on whole genomic analysis of African G2P[4] strains. In this study, the nearly complete genome sequences of two Kenyan G2P[4] strains, AK26 and D205, detected in 1982 and 1989, respectively, were analysed. Strain D205 exhibited a DS-1-like genotype constellation, whilst strain AK26 appeared to be an intergenogroup reassortant with a Wa-like NSP2 genotype on the DS-1-like genotype constellation. The VP2-4, VP6-7, NSP1, NSP3 and NSP5 genes of strain AK26 and the VP2, VP4, VP7 and NSP1–5 genes of strain D205 were closely related to those of the prototype or other human G2P[4] strains. In contrast, their remaining genes were distantly related, and, except for NSP2 of AK26, appeared to originate from or share a common origin with rotavirus genes of artiodactyl (ruminant and camelid) origin. These observations highlight the complex evolutionary dynamics of African G2P[4] rotaviruses.


Microbiology ◽  
2006 ◽  
Vol 152 (11) ◽  
pp. 3185-3196 ◽  
Author(s):  
Carlos Canchaya ◽  
Marcus J. Claesson ◽  
Gerald F. Fitzgerald ◽  
Douwe van Sinderen ◽  
Paul W. O'Toole

The genus Lactobacillus contains over 80 recognized species, and is characterized by a high level of diversity, reflected in its complex phylogeny. The authors' recent determination of the genome sequence of Lactobacillus salivarius means that five complete genomes of Lactobacillus species are available for comparative genomics: L. salivarius, L. plantarum, L. acidophilus, L. johnsonii and L. sakei. This paper now shows that there is no extensive synteny of the genome sequences of these five lactobacilli. Phylogeny based on whole-genome alignments suggested that L. salivarius was closer to L. plantarum than to L. sakei, which was closest to Enterococcus faecalis, in contrast to 16S rRNA gene relatedness. A total of 593 orthologues common to all five species were identified. Species relatedness based on this protein set was largely concordant with genome synteny-based relatedness. A Lactobacillus supertree, combining individual phylogenetic trees from each of 354 core proteins, had four main branches, comprising L. salivarius–L. plantarum; L. sakei; E. faecalis; and L. acidophilus–L. johnsonii. The extreme divergence of the Lactobacillus genomes analysed supports the recognition of new subgeneric divisions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256579
Author(s):  
Hongli Niu ◽  
Pengliang Xia ◽  
Yifeng Hu ◽  
Chuang Zhan ◽  
Yiting Li ◽  
...  

ZF-HD family genes play important roles in plant growth and development. Studies about the whole genome analysis of ZF-HD gene family have been reported in some plant species. In this study, the whole genome identification and expression profile of the ZF-HD gene family were analyzed for the first time in wheat. A total of 37 TaZF-HD genes were identified and divided into TaMIF and TaZHD subfamilies according to the conserved domain. The phylogeny tree of the TaZF-HD proteins was further divided into six groups based on the phylogenetic relationship. The 37 TaZF-HDs were distributed on 18 of 21 chromosomes, and almost all the genes had no introns. Gene duplication and Ka/Ks analysis showed that the gene family may have experienced powerful purification selection pressure during wheat evolution. The qRT-PCR analysis showed that TaZF-HD genes had significant expression patterns in different biotic stress and abiotic stress. Through subcellular localization experiments, we found that TaZHD6-3B was located in the nucleus, while TaMIF4-5D was located in the cell membrane and nucleus. Our research contributes to a comprehensive understanding of the TaZF-HD family, provides a new perspective for further research on the biological functions of TaZF-HD genes in wheat.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Francesc Coll ◽  
Ruth McNerney ◽  
Mark D Preston ◽  
José Afonso Guerra-Assunção ◽  
Andrew Warry ◽  
...  

2009 ◽  
Vol 83 (21) ◽  
pp. 11233-11243 ◽  
Author(s):  
Stephanie D. Friedman ◽  
Fred J. Genthner ◽  
Jennifer Gentry ◽  
Mark D. Sobsey ◽  
Jan Vinjé

ABSTRACT Male-specific single-stranded RNA (FRNA) coliphages belong to the family Leviviridae. They are classified into two genera (Levivirus and Allolevivirus), which can be subdivided into four genogroups (genogroups I and II in Levivirus and genogroups III and IV in Allolevivirus). Relatively few strains have been completely characterized, and hence, a detailed knowledge of this virus family is lacking. In this study, we sequenced and characterized the complete genomes of 19 FRNA strains (10 Levivirus strains and 9 Allolevivirus strains) and compared them to the 11 complete genome sequences available in GenBank. Nucleotide similarities among strains of Levivirus genogroups I and II were 75% to 99% and 83 to 94%, respectively, whereas similarities among strains of Allolevivirus genogroups III and IV ranged from 70 to 96% and 75 to 95%, respectively. Although genogroup I strain fr and genogroup III strains MX1 and M11 share only 70 to 78% sequence identity with strains in their respective genogroups, phylogenetic analyses of the complete genome and the individual genes suggest that strain fr should be grouped in Levivirus genogroup I and that the MX1 and M11 strains belong in Allolevivirus genogroup III. Strains within each genus share >50% sequence identity, whereas between the two genera, strains have <40% nucleotide sequence identity. Overall, amino acid composition, nucleotide similarities, and replicase catalytic domain location contributed to phylogenetic assignments. A conserved eight-nucleotide signature at the 3′ end of the genome distinguishes leviviruses (5′ ACCACCCA 3′) from alloleviviruses (5′ TCCTCCCA 3′).


2013 ◽  
Vol 94 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Junichi Soma ◽  
Hiroshi Tsunemitsu ◽  
Takeshi Miyamoto ◽  
Goro Suzuki ◽  
Takashi Sasaki ◽  
...  

Rotavirus C (RVC) has been detected frequently in epidemic cases and/or outbreaks of diarrhoea in humans and animals worldwide. Because it is difficult to cultivate RVCs serially in cell culture, the sequence data available for RVCs are limited, despite their potential economical and epidemiological impact. Although whole-genome sequences of one porcine RVC and seven human RVC strains have been analysed, this has not yet been done for a bovine RVC strain. In the present study, we first determined the nucleotide sequences for five as-yet underresearched genes, including the NSP4 gene, from a cultivable bovine RVC, the Shintoku strain, identified in Hokkaido Prefecture, Japan, in 1991. In addition, we elucidated the ORF sequences of all segments from another bovine RVC, the Toyama strain, detected in Toyama Prefecture, Japan, in 2010, in order to investigate genetic divergence among bovine RVCs. Comparison of segmental nucleotide and deduced amino acid sequences among RVCs indicates high identity among bovine RVCs and low identity between human and porcine RVCs. Phylogenetic analysis of each gene showed that the two bovine RVCs belong to a cluster distinct from human and porcine RVCs. These data demonstrate that RVCs can be classified into different genotypes according to host species. Moreover, RVC NSP1, NSP2 and VP1 amino acid sequences contain a unique motif that is highly conserved among rotavirus A (RVA) strains and, hence, several proteins from bovine RVCs are suggested to play important roles that are similar to those of RVAs.


2021 ◽  
Vol 43 (3) ◽  
pp. 2048-2058
Author(s):  
Chenghao Jia ◽  
Tianyan Yang ◽  
Takashi Yanagimoto ◽  
Tianxiang Gao

Sebastiscus species, marine rockfishes, are of essential economic value. However, the genomic data of this genus is lacking and incomplete. Here, whole genome sequencing of all species of Sebastiscus was conducted to provide fundamental genomic information. The genome sizes were estimated to be 802.49 Mb (S. albofasciatus), 786.79 Mb (S. tertius), and 776.00 Mb (S. marmoratus) by using k-mer analyses. The draft genome sequences were initially assembled, and genome-wide microsatellite motifs were identified. The heterozygosity, repeat ratios, and numbers of microsatellite motifs all suggested possibly that S. tertius is more closely related to S. albofasciatus than S. marmoratus at the genetic level. Moreover, the complete mitochondrial genome sequences were assembled from the whole genome data and the phylogenetic analyses genetically supported the validation of Sebastiscus species. This study provides an important genome resource for further studies of Sebastiscus species.


2021 ◽  
Author(s):  
vegard and eldholm ◽  
Janne Oseberg rønning ◽  
Anne Torunn Mengshoel ◽  
Trude Arnesen

Abstract Background : The aim of the current study was to improve our understanding of the origins and transmission of Mycobacterium africanum (MAF) in Norway.Methods : Whole-genome sequences (WGS) were generated for all (n=29) available clinical isolates identified as in Norway in the period 2010 – 2020. Phylogenetic analyses were performed.Results : The analyses indicated multiple imports of MAF lineage 6 from both East and West African countries, whereas MAF lineage 5 was restricted to patients with West African connections. We also find evidence for transmission of MAF in Norway. Finally, our analyses revealed that a group of isolates from patients originating in South Asia, identified as MAF by means of a commercial line-probe assay, in fact belonged to Mycobacterium orygis.Conclusions : Most MAF cases in Norway are the result of import, but transmission is occurring in immigrant communities.


Sign in / Sign up

Export Citation Format

Share Document