Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

2009 ◽  
Vol 167 (1-3) ◽  
pp. 164-169 ◽  
Author(s):  
Wan-Xia Ren ◽  
Pei-Jun Li ◽  
Yong Geng ◽  
Xiao-Jun Li
2015 ◽  
Vol 5 (3) ◽  
pp. 1-6 ◽  
Author(s):  
Zainab Siddiqui ◽  
◽  
S.M Ali Jawaid ◽  
Sandeep Vishen ◽  
Shreya Verma ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 333-347
Author(s):  
Shahid Sher ◽  
Abdul Ghani ◽  
Sikandar Sultan ◽  
Abdul Rehman

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


2014 ◽  
Vol 104 ◽  
pp. 414-422 ◽  
Author(s):  
Dilna Damodaran ◽  
K. Vidya Shetty ◽  
B. Raj Mohan

2019 ◽  
Vol 42 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sadia Qayyum ◽  
Ke Meng ◽  
Sidra Pervez ◽  
Faiza Nawaz ◽  
Changsheng Peng

Abstract Soil contamination with heavy metal content is a growing concern throughout the world as a result of industrial, mining, agricultural and domestic activities. Fungi are the most common and efficient group of heavy metal resistant microbe family which have potential for metal bioleaching. The use of filamentous fungi in bioleaching of heavy metals from contaminated soil has been developed recently. The current study intends to isolate a strain with the ability to degrade the pH value of the liquid medium. Identification results based on morphological and molecular biological analysis gave a 98% match to Aspergillus flavus. Batch experiments were conducted to select the optimal conditions for bioleaching process which indicated that 130 mg/ L sucrose, neutral pH and temperature of 30°C were more suitable during 15-day bioleaching experiments using A. flavus. In one-step bioleaching, the bioleaching efficiencies were 18.16% for Pb, 39.77% for Cd and 58.22% for Zn+2, while two-step bioleaching showed efficiencies of 16.91% for Pb, 49.66% for Cd and 65.73% for Zn+2. Overall, this study indicates that bioleaching of heavy metals in contaminated soil using A. flavus has the potential for contaminated soil remediation.


Author(s):  
Williams, Janet Olufunmilayo ◽  
Owhorji, Gloria

Aim: To determine the fungal population and physicochemistry of abattoir impacted soil in Iwofe, Rivers State. Study Design: This study focused on Abattoir impacted soil. Statistical analysis of data and interpretation was carried out. Place and Duration of Study: Abattoir impacted soil was collected from three points in an abattoir located in Iwofe, Rivers State while the unpolluted soil which served as control was collected from the Rivers State University, Port Harcourt in January, 2021. Methodology: Standard microbiological techniques were used: the fungal population was determined by inoculating aliquots of an appropriate dilution resulting from a ten-fold serial dilution on prepared Sabouraud dextrose agar plates in duplicates. Plates were later incubated for 3-5 days after which colonies were enumerated and used in obtaining the fungal population in the soil samples while distinct colonies were subcultured for macroscopic and microscopic identification of fungi. The physicochemical parameters and heavy metals were analyzed using standard methods. Results: Fungal load in the control and abattoir impacted soil were 1.09×105 and 3.9×104 CFU/g, respectively. The fungal load of the control soil was significantly higher (P˂0.05) than the abattoir impacted soil. The fungal isolates identified in the abattoir impacted soil were Microsporium sp, Aspergillus niger and Candida sp while Aspergillus niger, Aspergillus flavus, Fusarium sp, Penicillium sp, Mucor sp and Rhizopus sp were identified from the control soil. The pH, temperature, nitrate and phosphate of the abattoir soil were 6.7, 28.33℃, 27.83(mgKg-1) and 1055(mgKg-1), respectively. The concentrations of Cadmium, Iron and Lead in the abattoir Impacted soil and control soil were 0.81, 563.35 and 7.12 mgKg-1, 0.51, 582.0 and 3.18 mgKg-1, respectively. The physico chemistry and heavy metals in the abattoir soil were within acceptable limits. Discussion and Conclusion: The findings from this study showed that heavy metals in abattoir impacted soil had an impact in the fungal population which led to the isolation of only three fungal isolates belonging to Microsporium sp, Candida sp and Aspergillus niger. More so, despite the presence of heavy metals in the abattoir impacted soil, the metals were all within permissible limits. Thus, the abattoir impacted soil was not heavily polluted.


Sign in / Sign up

Export Citation Format

Share Document