Development of Nanoporous Textile Sludge Based Adsorbent for the Dye Removal from Industrial Textile Effluent

2021 ◽  
pp. 126864
Author(s):  
Ninad Oke ◽  
S. Mohan
2019 ◽  
Vol 13 ◽  
pp. 122-129 ◽  
Author(s):  
Jeky Chanwala ◽  
Garima Kaushik ◽  
Mohd. Ashraf Dar ◽  
Shivangi Upadhyay ◽  
Akhil Agrawal

2018 ◽  
Vol 7 (3.8) ◽  
pp. 106
Author(s):  
K J.Sosamony ◽  
P A.Soloman

Currently, water pollution control is one of the major logical zones. The textile industry is a major pollution causing industry among the industrial pollutions. Treatment of textile effluent utilizing customary physical as well as chemical strategies is costly, produces enormous amounts of sludge and needs the expansion of lethal chemicals. BOD to COD proportion of textile effluent is low. Thus it is not appropriate to treat textile effluent by a solitary physicochemical or biological process. In this investigation, the textile effluent is dealt with utilizing Moving Bed Bio-film Reactor (MBBR) with the magnetic field after improving the biodegradability by the solar photo-Fenton process. The carriers in MBBR is inoculated with azoarcus bacteria isolated from textile sludge. The fundamental  parameters as pH, carrier filling ratio and contact time were optimized utilizing Box Behnken factual design. The MBBR process has most extreme efficiency at pH 7, filling ratio of 62% and a contact time 2.4 days. In this optimum condition 68.9% BOD and 80% COD  are expelled. At the point when the pretreated wastewater was dealt with MBBR reactor under the influence of magnetic field, the efficiency of the treatment is additionally expanded, so 87.4% COD expulsion and 87% BOD evacuation were accomplished at 12 mT attractive field power when exposure time was at 12 hrs.  


2011 ◽  
Vol 8 (s1) ◽  
pp. S61-S66 ◽  
Author(s):  
C. Parvathi ◽  
T. Maruthavanan ◽  
S. Sivamani ◽  
C. Prakash

The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.


2017 ◽  
Vol 23 (3) ◽  
pp. 207 ◽  
Author(s):  
A.L. Ahmad ◽  
S.W. Puasa ◽  
S. Abiding

Ultrafiltration membrane was used to treat the effluent from textile industries. Crossflow ultrafiltration using GN polymeric membrane was used to remove the dye from textile effluent. A synthetic textile effluent of Direct-15 dye was used. The study focused through the effect of feed concentration, transmembrane pressure and solution’s pH on the permeate flux and percentage of dye removal were investigated. Dye concentration had significant effects on flux values. Under the fixed pressures and pH, the flux decreased while the dye rejection increased with increasing feed concentration. Transmembrane pressure also had significant effect on flux values. Under the fixed feed concentration and pH, the flux increased while dye rejection decreased with increasing pressure. Experiment data showed that the highest flux was observed at pH 4 (acidic condition) while the highest dye removal observed at pH 7. Data collection could be used to improve the effectiveness of dye removal from textile industry wastewater using membrane technology.


Sign in / Sign up

Export Citation Format

Share Document