Changes in Scaphoid Bone Density after Acute Fracture

2006 ◽  
Vol 31 (4) ◽  
pp. 368-370 ◽  
Author(s):  
N. J. MADELEY ◽  
A. B. STEPHEN ◽  
N. D. DOWNING ◽  
T. R. C. DAVIS

The radiographic density of the proximal fragments of 16 scaphoid fractures was assessed on scaphoid series radiographs taken at 6 to 12 weeks. In addition, dual energy X-ray absorptiometry measurements of bone mineral density in the distal radius and proximal and distal fracture fragments were performed at 1 to 2 weeks and 6 to 12 weeks. Median reductions of 9% and 10% were observed in bone mineral density in the proximal fracture fragment and the distal radius respectively, but these did not correlate with the radiographic density of the proximal fragment. A greater median reduction in bone mineral density (27%) was observed in the distal fracture fragment and more bone loss occurred at this site when there was an apparent increase in the radiographic density of the proximal fragment (median fall of 0.23 g/cm2 versus 0.14 g/cm2). Thus, apparent increased radiographic density of the proximal fragment may be due to increased bone loss from the distal fragment.

2020 ◽  
Author(s):  
Lungwani Muungo

Although it is well established that estrogen deficiencycauses osteoporosis among the postmenopausalwomen, the involvement of estrogen receptor (ER) in itspathogenesis still remains uncertain. In the presentstudy, we have generated rats harboring a dominantnegative ERa, which inhibits the actions of not only ERabut also recently identified ERb. Contrary to our expectation,the bone mineral density (BMD) of the resultingtransgenic female rats was maintained at the same levelwith that of the wild-type littermates when sham-operated.In addition, ovariectomy-induced bone loss wasobserved almost equally in both groups. Strikingly, however,the BMD of the transgenic female rats, after ovariectomized,remained decreased even if 17b-estradiol(E2) was administrated, whereas, in contrast, the decreaseof littermate BMD was completely prevented byE2. Moreover, bone histomorphometrical analysis ofovariectomized transgenic rats revealed that the higherrates of bone turnover still remained after treatmentwith E2. These results demonstrate that the preventionfrom the ovariectomy-induced bone loss by estrogen ismediated by ER pathways and that the maintenanceof BMD before ovariectomy might be compensatedby other mechanisms distinct from ERa and ERbpathways.


Rheumatology ◽  
2021 ◽  
Vol 60 (Supplement_1) ◽  
Author(s):  
Malika A Swar ◽  
Marwan Bukhari

Abstract Background/Aims  Osteoporosis (OP) is an extra-articular manifestation of rheumatoid arthritis (RA) that leads to increased fracture susceptibility due to a variety of reasons including immobility and cytokine driven bone loss. Bone loss in other populations has well documented risk factors. It is unknown whether bone loss in RA predominantly affects the femoral neck or the spine. This study aimed to identify independent predictors of low bone mineral density (BMD) in patients RA at the lumbar spine and the femoral neck. Methods  This was a retrospective observational cohort study using patients with Rheumatoid arthritis attending for a regional dual X-ray absorptiometry (DEXA) scan at the Royal Lancaster Infirmary between 2004 and 2014. BMD in L1-L4 in the spine and in the femoral neck were recorded. The risk factors investigated were steroid use, family history of osteoporosis, smoking, alcohol abuse, BMI, gender, previous fragility fracture, number of FRAX(tm) risk factors and age. Univariate and Multivariate regression analysis models were fitted to explore bone loss at these sites using BMD in g/cm2 as a dependant variable. . Results  1,527 patients were included in the analysis, 1,207 (79%) were female. Mean age was 64.34 years (SD11.6). mean BMI was 27.32kg/cm2 (SD 5.570) 858 (56.2%) had some steroid exposure . 169(11.1%) had family history of osteoporosis. fragility fracture history found in 406 (26.6%). 621 (40.7%) were current or ex smokers . There was a median of 3 OP risk factors (IQR 1,3) The performance of the models is shown in table one below. Different risk factors appeared to influence the BMD at different sites and the cumulative risk factors influenced BMD in the spine. None of the traditional risk factors predicted poor bone loss well in this cohort. P129 Table 1:result of the regression modelsCharacteristicB femoral neck95% CIpB spine95%CIpAge at scan-0.004-0.005,-0.003<0.01-0.0005-0.002,0.00050.292Sex-0.094-0.113,-0.075<0.01-0.101-0.129,-0.072<0.01BMI (mg/m2)0.0080.008,0.0101<0.010.01130.019,0.013<0.01Fragility fracture-0.024-0.055,0.0060.12-0.0138-0.060,0.0320.559Smoking0.007-0.022,0.0350.650.0286-0.015,0.0720.20Alcohol0.011-0.033,0.0 5560.620.0544-0.013,0.1120.11Family history of OP0.012-0.021,0.0450.470.0158-0.034,0.0650.53Number of risk factors-0.015-0.039,0.0080.21-0.039-0.075,-0.0030.03steroids0.004-0.023,0.0320.030.027-0.015,0.0690.21 Conclusion  This study has shown that predictors of low BMD in the spine and hip are different and less influential than expected in this cohort with RA . As the FRAX(tm) tool only uses the femoral neck, this might underestimate the fracture risk in this population. Further work looking at individual areas is ongoing. Disclosure  M.A. Swar: None. M. Bukhari: None.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1195.2-1195
Author(s):  
K. Pavelka ◽  
L. Šenolt ◽  
O. Sleglova ◽  
J. Baloun ◽  
O. Růžičková

Background:Hand osteoarthritis (OA) and its more severe subset erosive hand OA are common causes of pain and morbidity. Some metabolic factors were suggested to be implicated in erosive disease. Few studies investigated differences in systemic bone loss between erosive and non-erosive hand OA.Objectives:To compare the change of bone mineral density (BMD) between patients with erosive and non-erosive hand OA in a two-year longitudinal study.Methods:Consecutive patients with symptomatic HOA fulfilling the American College of Rheumatology (ACR) criteria were included in this study. Erosive hand OA was defined by at least one erosive interphalangeal joint. All patients underwent clinical assessments of joint swelling and radiographs of both hands. DEXA examination of lumbar spine, total femur and femur neck was performed at the baseline and after two years.Results:Altogether, 141patients (15 male) with symptomatic nodal HOA were included in this study and followed between April 2012 and January 2019. Out of these patients, 80 had erosive disease after two years. The disease duration (p<0.01) was significantly higher in patients with erosive compared with non-erosive disease at baseline.Osteoporosis (T-score <-2.5 SD) was diagnosed in 12.5% (9/72) of patients with erosive hand OA and in 8.06% (5/57) of patients with non-erosive hand OA at baseline. BMD was significantly lowered in patients with erosive compared with non-erosive disease at baseline (lumbar spine: 1.05g/cm2 vs. 1.13 g/cm2, p<0.05, total femur: 0.90 g/cm2 vs. 0.97 g/cm2, p<0.01 and femur neck: 0.86 g/cm2 vs. 0.91, p<0.05). T-scores of lumbar spine (-0.96 vs. -0.41 SD, p<0.05), total femur (-0.69 vs. -0.33 SD, p<0.05) and femur neck (-1.14 vs. -0.88 SD, p<0.05) were also significantly lowered in patients with erosive compared with non-erosive disease.Two years, the BMD remained also significantly lowered in patients with erosive compared with non-erosive disease (lumbar spine: 1.05g/cm2 vs. 1.14 g/cm2, p<0.05, total femur: 0.92 g/cm2 vs. 0.97 g/cm2, p<0.05 and femur neck: 0.86 g/cm2 vs. 0.91, p<0.05), which was in agreement with the finding for T-scores of lumbar spine (-1.05 vs. -0.39 SD, p<0.05), total femur (-0.74 vs. -0.34 SD, p<0.01) and femur neck (-1.07 vs. -0.72 SD, p<0.01).Conclusion:These results suggest that patients with erosive hand OA are at higher risk for the development of general bone loss. Over two years patients with erosive disease had significant lower bone mineral density at all measured sites.References:[1]This work was supported by the project AZV no. 18-00542 and MHCR No. 023728.Acknowledgments:Project AZV no. 18-00542 and MHCR No. 023728Disclosure of Interests:Karel Pavelka Consultant of: Abbvie, MSD, BMS, Egis, Roche, UCB, Medac, Pfizer, Biogen, Speakers bureau: Abbvie, MSD, BMS, Egis, Roche, UCB, Medac, Pfizer, Biogen, Ladislav Šenolt: None declared, Olga Sleglova: None declared, Jiří Baloun: None declared, Olga Růžičková: None declared


2015 ◽  
Vol 26 (7) ◽  
pp. 1893-1901 ◽  
Author(s):  
J. Paccou ◽  
M. H. Edwards ◽  
K. A. Ward ◽  
K. A. Jameson ◽  
C. L. Moss ◽  
...  

1988 ◽  
Vol 44 (7) ◽  
pp. 745-749
Author(s):  
TATSUSHI TOMOMITSU ◽  
SHINICHI YANAGIMOTO ◽  
GO HITOMI ◽  
AKIHIKO MURAKAMI ◽  
SHINJI SUEMORI ◽  
...  

2001 ◽  
Vol 19 (14) ◽  
pp. 3306-3311 ◽  
Author(s):  
Charles L. Shapiro ◽  
Judith Manola ◽  
Meryl Leboff

PURPOSE: We sought to evaluate the effects of chemotherapy-induced ovarian failure on bone loss and markers of skeletal turnover in a prospective longitudinal study of young women with breast cancer receiving adjuvant chemotherapy. PATIENTS AND METHODS: Forty-nine premenopausal women with stage I/II breast cancers receiving adjuvant chemotherapy were evaluated within 4 weeks of starting chemotherapy (baseline), and 6 and 12 months after starting chemotherapy with dual-energy absorptiometry and markers of skeletal turnover osteocalcin and bone-specific alkaline phosphatase. Chemotherapy-induced ovarian failure was defined as a negative pregnancy test, greater than 3 months of amenorrhea, and a follicle-stimulating hormone ≥ 30 MIU/mL at the 12-month evaluation. RESULTS: Among the 35 women who were defined as having ovarian failure, highly significant bone loss was observed in the lumbar spine by 6 months and increased further at 12 months. The median percentage decrease of bone mineral density in the spine from 0 to 6 months and 6 to 12 months was −4.0 (range, −10.4 to +1.0; P = .0001) and −3.7 (range, −10.1 to 9.2; P = .0001), respectively. In contrast, there were no significant decreases in bone mineral density in the 14 patients who retained ovarian function. Serum osteocalcin and bone specific alkaline phosphatase, markers of skeletal turnover, increased significantly in the women who developed ovarian failure. CONCLUSION: Chemotherapy-induced ovarian failure causes rapid and highly significant bone loss in the spine. This may have implications for long-term breast cancer survivors who may be at higher risk for osteopenia, and subsequently osteoporosis. Women with breast cancer who develop chemotherapy-induced ovarian failure should have their bone density monitored and treatments to attenuate bone loss should be evaluated.


Sign in / Sign up

Export Citation Format

Share Document