Nitrate contamination and its relationship with flood irrigation management

2012 ◽  
Vol 442-443 ◽  
pp. 15-22 ◽  
Author(s):  
I. García-Garizábal ◽  
J. Causapé ◽  
R. Abrahao
Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2511 ◽  
Author(s):  
Edoardo Severini ◽  
Marco Bartoli ◽  
Monica Pinardi ◽  
Fulvio Celico

In the northern sector of the Po River Plain (Italy), widespread intensive agriculture and animal farming are supported by large amounts of water from Alpine lakes and their emissaries. Flood irrigation and excess fertilization with manure affect both the hydrology and the chemical quality of surface and groundwater, resulting in diffuse nitrogen pollution. However, studies analyzing the mechanisms linking agricultural practices with vertical and horizontal nitrogen paths are scarce in this area. We investigated groundwater quality and quantity in an unconfined, coarse-grained alluvial aquifer adjacent to the Mincio River (a tributary of the Po River), where steep summer gradients of nitrate (NO3−) concentrations are reported. The effects of manure on solutes’ vertical transport during precipitation events in fertilized and in control soils were simulated under laboratory conditions. The results show high SiO2 and NO3− leaching in fertilized soils. Similarly, field data are characterized by high SiO2 and NO3− concentrations, with a comparable spatial distribution but a different temporal evolution, suggesting their common origin but different processes affecting their concentrations in the study area. Our results show that SiO2 can be used as a conservative tracer of manure spreading, as it does not undergo biogeochemical processes that significantly alter its concentrations. On the contrary, nitrate displays large short-term variations related to aquifer recharge (i.e., flood irrigation and precipitation). In fact, aquifer recharge may promote immediate solubilization and stimulate nitrification, resulting in high NO3− concentrations up to 95.9 mg/L, exceeding the Water Framework Directive (WFD) thresholds. When recharge ends, anoxic conditions likely establish in the saturated zone, favoring denitrification and resulting in a steep decrease in NO3− concentrations.


EDIS ◽  
1969 ◽  
Vol 2003 (8) ◽  
Author(s):  
Thomas H. Yeager

The purpose of this guide is to provide detailed information for use by greenhouse and nursery operators conducting specific fertilization and irrigation management practices to establish a waiver of liability for recovery costs resulting from nitrate contamination of ground water. This waiver is facilitated by the 1994 legislation (Chapter 576.045, F.S.) that provided for interim measures. Even though this publication was written specifically to help nursery operators implement fertilization and irrigation practices for the management of nitrate nitrogen, the concepts and principles are applicable to other nutrients, such as phosphorus, and potential groundwater contaminants. This document is ENH895, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date April 17, 2003. https://edis.ifas.ufl.edu/ep152


2020 ◽  
Vol 36 (5) ◽  
pp. 703-715
Author(s):  
Yin-Lin J Chiu ◽  
Michele L Reba

HighlightsDeployed a wireless sensor network to track flood irrigation management in ~255 ha production scale rice fieldsUltrasonic sensors were installed in rice fields and water level data were wirelessly transmitted for the growing seasonStudy found significant relationship between automated and manual measurement methodsPotential benefits of using wireless sensor networks are described Abstract. The inclusion of automation in agricultural irrigation may improve crop management by providing organized, site-specific, and real-time information to producers. The objective of this study was to develop a rugged, wireless sensor network (WSN) and infrastructure to retrieve, process, and disseminate sensor data installed in remote rice fields. The study took place during the 2018 rice production season in eastern Arkansas. A working prototype WSN (consisting of 24 sensor nodes) was assembled and field-tested in sixteen production-sized (approximately 16 ha each) irrigated rice fields. Data were collected during the growing season and included water depth and soil water. The WSN retrieved, processed, and disseminated in-situ data from the production fields to a remote computer server. Data were made viewable via a web browser on internet-connected computers and mobile devices. The analysis quantified the benefits, costs, and practical usability of the system to assist with field condition monitoring and irrigation management in production-sized rice farming operations. Water level measurements using the WSN unit were significantly related to the actual measurements in Multiple-inlet rice irrigation (MIRI), Row rice (ROW), and Alternate wetting and drying (AWD) irrigation treatments (r = 0.453 to 0.946, p = <0.0001). However, the reliability of this equipment was challenged by field installation and maintenance. Several in-house troubleshooting methods are discussed to ensure accurate usage of this automated system in future deployments. The results of the study indicated the use of the ultrasonic sensor for estimating water level in MIRI, ROW and AWD irrigation to be a viable solution for future WSN development. The functional WSN supported sensors for automated water level and soil water measurements that could, in future, provide real-time knowledge of the field condition, and enhance resource management for the producer. Keywords: Field condition monitoring, Production scale field monitoring, Remote sensor, Wireless sensor, Wireless sensor network.


2003 ◽  
Vol 8 (1) ◽  
pp. 47 ◽  
Author(s):  
Y. Aldryhim ◽  
S. Al-Bukiri

The red palm weevil (RPW) Rhynchophorous ferrugineus (Oliv.) is the most important pest attacking date palm trees. The objective of this study was to determine the effect of drip and flood irrigation on the within-grove distribution of RPW. The current study was started with the first appearance of the infestation to almost disappearance of the infestation. Results showed that more infested trees were detected in plots with flood irrigation. The number of infested trees in these plots represented 89% of the total infested trees. This study suggested that irrigation management and soil moisture are key factors in the dispersion of the RPW infestation and could be used as one of the integrated pest management tools. 


Author(s):  
Masoud Pourgholam-Amiji ◽  
Abdolmajid Liaghat ◽  
Mojtaba Khoshravesh ◽  
Hazi Mohammad Azamathulla

Abstract Increasing population and the need for more food has made forces on water resources due to crop productions. One of the strategies for preventing the overuses of safe water resources for agriculture is to increase agricultural productivity by reducing the amount of irrigation water with a slight reduction or even maintaining the yields. Rice production in the northern region of Iran which is strategically and economically very important, requires irrigation management changing with traditional irrigation methods (flood irrigation). This study was conducted in 2017–2018 crop season to investigate the effect of different irrigation management on water consumption, rice yield and water productivity in paddy field of Babolsar, Mazandaran, Iran. The experiment was performed in the field in a randomized complete block design with three replicates and four treatments in 12 plots. The treatments were TI (Traditional/flood Irrigation), AI1, AI3 and AI5 (Alternative Irrigation one, three and five days after the disappearance of water from the soil surface, respectively). The number of yield components and the water productivity indexes were determined. The results of this study showed a significant difference (at 1% level) between irrigation treatments in terms of yield components including tiller number, Panicle length, filling percentage, and water productivity, but they did not have any significant effect on plant height and grain yield. The applied irrigation water for TI, AI1, AI3, and AI5 treatments was measured to be 7,940, 4,910, 4,090 and 3,290 m3/ha, respectively. The maximum yield (6.11 ton/ha) belonged to TI treatment and after that with the value of 6.02 ton/ha was belong to AI5 treatment with the least application of water. Rice water productivities for TI, AI1, AI3, and AI5 treatments were calculated to be 0.82, 1.05, 1.38 and 1.83 kg/m3, respectively. Therefore, alternate irrigation five days after the disappearance of surface water (AI5) was accepted to be the best irrigation practices among the other different irrigation management due to 56.07% reduction in water use and only 1.47% reduction in grain yield compared to control treatment.


2016 ◽  
Vol 176 ◽  
pp. 9-17 ◽  
Author(s):  
José Bernardo Moraes Borin ◽  
Felipe de Campos Carmona ◽  
Ibanor Anghinoni ◽  
Amanda Posselt Martins ◽  
Isadora Rodrigues Jaeger ◽  
...  

Author(s):  
Charles Hillyer ◽  
Marshall English ◽  
Carole Abourached ◽  
Chadi Sayde ◽  
Kent Hutchinson ◽  
...  

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Don Rainey ◽  
Esen Momol ◽  
Claire Lewis ◽  
...  

Proper irrigation management is critical to conserve and protect water resources and to properly manage nutrients in the home landscape. How lawns and landscapes are irrigated directly impacts the natural environment, so landscape maintenance professionals and homeowners must adopt environmentally-friendly approaches to irrigation management. After selecting the right plant for the right place, water is the next critical factor to establish and maintain a healthy lawn and landscape. Fertilization is another important component of lawn and landscape maintenance, and irrigation must be applied correctly, especially following fertilization, to minimize potential nutrient losses. This publication supplements other UF/IFAS Extension publications that also include information on the role of soil and the root zone in irrigation management. This publication is designed to help UF/IFAS Extension county agents prepare materials to directly address nutrient losses from lawns and landscapes caused by inadequate irrigation management practices. This 6-page fact sheet was written by George Hochmuth, Laurie Trenholm, Don Rainey, Esen Momol, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, October 2013. http://edis.ifas.ufl.edu/ss586


EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Davie Mayeso Kadyampakeni ◽  
Kelly T. Morgan ◽  
Mongi Zekri ◽  
Rhuanito Ferrarezi ◽  
Arnold Schumann ◽  
...  

Water is a limiting factor in Florida citrus production during the majority of the year because of the low water holding capacity of sandy soils resulting from low clay and the non-uniform distribution of the rainfall. In Florida, the major portion of rainfall comes in June through September. However, rainfall is scarce during the dry period from February through May, which coincides with the critical stages of bloom, leaf expansion, fruit set, and fruit enlargement. Irrigation is practiced to provide water when rainfall is not sufficient or timely to meet water needs. Proper irrigation scheduling is the application of water to crops only when needed and only in the amounts needed; that is, determining when to irrigate and how much water to apply. With proper irrigation scheduling, yield will not be limited by water stress. With citrus greening (HLB), irrigation scheduling is becoming more important and critical and growers cannot afford water stress or water excess. Any degree of water stress or imbalance can produce a deleterious change in physiological activity of growth and production of citrus trees.  The number of fruit, fruit size, and tree canopy are reduced and premature fruit drop is increased with water stress.  Extension growth in shoots and roots and leaf expansion are all negatively impacted by water stress. Other benefits of proper irrigation scheduling include reduced loss of nutrients from leaching as a result of excess water applications and reduced pollution of groundwater or surface waters from the leaching of nutrients. Recent studies have shown that for HLB-affected trees, irrigation frequency should increase and irrigation amounts should decrease to minimize water stress from drought stress or water excess, while ensuring optimal water availability in the rootzone at all times.


Sign in / Sign up

Export Citation Format

Share Document