scholarly journals Reactive Silica Traces Manure Spreading in Alluvial Aquifers Affected by Nitrate Contamination: A Case Study in a High Plain of Northern Italy

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2511 ◽  
Author(s):  
Edoardo Severini ◽  
Marco Bartoli ◽  
Monica Pinardi ◽  
Fulvio Celico

In the northern sector of the Po River Plain (Italy), widespread intensive agriculture and animal farming are supported by large amounts of water from Alpine lakes and their emissaries. Flood irrigation and excess fertilization with manure affect both the hydrology and the chemical quality of surface and groundwater, resulting in diffuse nitrogen pollution. However, studies analyzing the mechanisms linking agricultural practices with vertical and horizontal nitrogen paths are scarce in this area. We investigated groundwater quality and quantity in an unconfined, coarse-grained alluvial aquifer adjacent to the Mincio River (a tributary of the Po River), where steep summer gradients of nitrate (NO3−) concentrations are reported. The effects of manure on solutes’ vertical transport during precipitation events in fertilized and in control soils were simulated under laboratory conditions. The results show high SiO2 and NO3− leaching in fertilized soils. Similarly, field data are characterized by high SiO2 and NO3− concentrations, with a comparable spatial distribution but a different temporal evolution, suggesting their common origin but different processes affecting their concentrations in the study area. Our results show that SiO2 can be used as a conservative tracer of manure spreading, as it does not undergo biogeochemical processes that significantly alter its concentrations. On the contrary, nitrate displays large short-term variations related to aquifer recharge (i.e., flood irrigation and precipitation). In fact, aquifer recharge may promote immediate solubilization and stimulate nitrification, resulting in high NO3− concentrations up to 95.9 mg/L, exceeding the Water Framework Directive (WFD) thresholds. When recharge ends, anoxic conditions likely establish in the saturated zone, favoring denitrification and resulting in a steep decrease in NO3− concentrations.

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3276
Author(s):  
Giampaolo Rossetti ◽  
Valentina Pieri ◽  
Rossano Bolpagni ◽  
Daniele Nizzoli ◽  
Pierluigi Viaroli

The Po river plain (Northern Italy) hosts artificial, lowland springs locally known as fontanili, which provide important ecosystem services in an area dominated by intensive agricultural activities. Here we present a study carried out in 50 springs. Each spring was visited once from October 2015 to January 2016. The sampled sites were selected to include springs studied in 2001 and 2004, to evaluate changes in water quality and ostracod assemblages that possibly occurred over a period of 10–15 years, and explore the relationships between ostracod community composition and water physical and chemical variables. Our results showed a decrease in the chemical water quality especially, in springs south of the Po river, evidenced by high nitrate levels. Most of the studied springs showed a relevant decrease in dissolved reactive silica, probably related to recent transformations of either agricultural practices or crop typology. Ostracods were mostly represented by common and tolerant species, and communities were characterized by low alpha diversity and high species turnover. Water temperature and mineralization level were the most influential variables in structuring the ostracod communities. We stress the need to implement conservation and restoration measures for these threatened ecosystems, to regain their role as ecosystem services providers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 267
Author(s):  
Anderson do Espirito Santo Pereira ◽  
Halley Caixeta Oliveira ◽  
Leonardo Fernandes Fraceto ◽  
Catherine Santaella

Our agriculture is threatened by climate change and the depletion of resources and biodiversity. A new agriculture revolution is needed in order to increase the production of crops and ensure the quality and safety of food, in a sustainable way. Nanotechnology can contribute to the sustainability of agriculture. Seed nano-priming is an efficient process that can change seed metabolism and signaling pathways, affecting not only germination and seedling establishment but also the entire plant lifecycle. Studies have shown various benefits of using seed nano-priming, such as improved plant growth and development, increased productivity, and a better nutritional quality of food. Nano-priming modulates biochemical pathways and the balance between reactive oxygen species and plant growth hormones, resulting in the promotion of stress and diseases resistance outcoming in the reduction of pesticides and fertilizers. The present review provides an overview of advances in the field, showing the challenges and possibilities concerning the use of nanotechnology in seed nano-priming, as a contribution to sustainable agricultural practices.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 214
Author(s):  
Agathe Roucou ◽  
Christophe Bergez ◽  
Benoît Méléard ◽  
Béatrice Orlando

The levels of fumonisins (FUMO)—mycotoxins produced by Fusarium verticillioides—in maize for food and feed are subject to European Union regulations. Compliance with the regulations requires the targeting of, among others, the agroclimatic factors influencing fungal contamination and FUMO production. Arvalis-Institut du végétal has created a national, multiyear database for maize, based on field survey data collected since 2003. This database contains information about agricultural practices, climatic conditions and FUMO concentrations at harvest for 738 maize fields distributed throughout French maize-growing regions. A linear mixed model approach highlights the presence of borers and the use of a late variety, high temperatures in July and October, and a water deficit during the maize cycle as creating conditions favoring maize contamination with Fusarium verticillioides. It is thus possible to target a combination of risk factors, consisting of this climatic sequence associated with agricultural practices of interest. The effects of the various possible agroclimatic combinations can be compared, grouped and classified as promoting very low to high FUMO concentrations, possibly exceeding the regulatory threshold. These findings should facilitate the creation of a national, informative and easy-to-use prevention tool for producers and agricultural cooperatives to manage the sanitary quality of their harvest.


2011 ◽  
Vol 255-260 ◽  
pp. 602-606
Author(s):  
Long Fei Cheng ◽  
Lin Yan Li

Masonry retaining structure consists of precast concrete blocks, which has good looks and is in harmony with environment. Blocks with proper shape can be used in fluctuating belt of the reservoir area. The construction of masonry structure should conform to the following steps: first, excavate the foundation ditch, lay a cushion and arrange the controlling points, insuring the quality of the first layer of blocks; it would be better to choose inorganic coarse-grained soil as filler and to set a water filtering layer with a height more than 30cm behind the retaining wall; carry on the construction of earth filling behind the wall after the blocks are fixed as requested, and then fix the geotechnical grille when the height of earth filling reaches the elevation of the grille; put Geotechnical Fabric between permeable aggregate and the earth filling behind it to keep the two materials from mixing.


2021 ◽  
Author(s):  
Daniele Masseroni ◽  
Fabiola Gangi ◽  
Alessandro Castagna ◽  
Claudio Gandolfi

<p>Selecting the best irrigation management is required for improved use of water resources and for achieving sustainable crop productions. That selection implies accurate predictions of crop water requirement in response to meteorological variables and phenological stages. A plethora of irrigation models are reported to date in literature, many of which are based on three different approaches proposed by the FAO organization, the single and double crop coefficient methods and, the canopy-cover curve determination included in the AquaCrop model.</p><p>The objective of this study is to compare irrigation needs and scheduling obtained by the three aforementioned approaches in the agricultural context of the Po River Plain (northern Italy). The first and the second approaches were simulated respectively by Sim1Kc and IdrAgra models, which implemented the algorithms and crop parameterizations reported in FAO paper 56 for a crop water requirement estimation. While the third approach was simulated by the open source version of AquaCrop software.</p><p>Models were tested on a maize plot located in the lower-east part of Lombardy Po River Plain characterized by a humid sub-tropical climate, according Köppen classification. A single sandy-loam layer profile of medium-textured soil 1 m deep was considered for the simulation. Crop parameters values in Sim1Kc and AcquaCrop models were mutuated from the IdrAgra model, which is routinely applied in the region as the reference model for the assessment of crop water requirements.</p><p>Actual evapotranspiration and irrigation needs were evaluated respectively in rainfed and irrigated simulations. These latter were performed replacing soil moisture at the field capacity when 70% of TAW was reached. Results achieved in three agrarian seasons characterized by low, medium and high rainfall volumes (from June to September) were compared (respectively the years 2009, 2002 and 2014 with about 41 mm, 116 mm and 152 mm of rainfall).</p><p>The results show that in rainfed conditions, for each year, actual evapotranspiration simulated by the models were consistent with each other, with an average RMSE, calculated comparing the models in pairs, of about 1 mm over the season. Differences among the models were mainly observed in the first part of the season (respectively before the thirtieth day after the sowing) and for each year, probably caused by a still limited crop and root development, which highlights the differences in simulating water fluxes exchanges in soil-vegetation domain proposed by three modeling approaches.</p><p>Concerning irrigations, IdrAgra and AquaCrop appear very consistent with each other in volumes and frequency, especially during mid-crop stages and in all years with a total irrigation volume of about 400, 300 and 180 mm and with 10, 12 and 8 irrigation interventions respectively in the years 2009, 2002 and 2014. Results of Sim1Kc were consistent with those obtained by the other models only in mid and end crop season, whereas no irrigations were suggested in the first part of the season.</p>


2021 ◽  
Vol 0 (15) ◽  
pp. 0-0
Author(s):  
Hatice ÖĞÜTCÜ

With the increase in the world population every year, the need for plant and animal foods has increased. In order to meet these needs, the amount of fertilizers (with chemical content) used to increase productivity in agriculture has increased and has become a threat to the soil and the environment. In order to minimize the harms of chemical fertilizers and to preserve the fertility of the soil, new environmentally friendly applications have been researched. In this context, studies on "Plant Probiotics", which are one of the effective applications both in protecting the quality of the soil and increasing the yield in plant production, especially on local isolates and formulations to be prepared from them, have gained momentum. Plant probiotics are a group of microorganisms or microorganisms that can improve soil health, plant growth, and plant tolerance or immunity to various abiotic and biotic stresses, thanks to their potential role in enhanced nutrient acquisition and/or biocontrol activities by colonizing the root zone of plants, called the rhizosphere. As a result of inoculation of plants with strains of these bacteria, which have very different properties (nitrogen binding, phosphate solubilizing, biocontrol agent, stress resistance, phytohormone synthesis), it directly affects the growth and development of the roots and shoots of the plant, increasing the biomass, as well as contributing to the increase of the yield and quality of the product. In this context, the preparation and use of biofertilizer formulations of local plant probiotic bacteria, which will be obtained from their natural areas, has become very important in rational agricultural practices in recent years and intensive researches are carried out. With the use of the aforementioned plant probiotic formulations, environmentally friendly green production will be made by contributing to the production of both foodstuffs and feed raw materials in order to ensure the continuity of the world population. As a result, the protection of the ecosystem will be ensured by preventing environmental pollution, which is the problem of the whole world.


Agriculture ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Joycelyn Quansah ◽  
Cesar Escalante ◽  
Angela Kunadu ◽  
Firibu Saalia ◽  
Jinru Chen

Vegetable farming is the most practiced urban agriculture in Ghana. A previous study of our laboratory revealed poor microbial quality of, and presence of Salmonella on, leafy green vegetables grown or sold in Accra, Ghana. The aims of this study were to determine agricultural practices of urban vegetable farmers and the association between agricultural practices and microbial safety of vegetables produced. A survey was conducted among 102 farmers from 12 farming areas who produced exotic and indigenous leafy greens in Accra, Ghana to identify their farming practices. It was observed that water from waste drains pumped into shallow wells was used for irrigation by 70% of the farmers. Incompletely composted manure was commonly used (99%) in farming. Vegetables were usually harvested using bare hands (96%) and knives (73%) and transported mainly in sacks (94%) to market centers under non-refrigerated conditions. Over 60% of the farmers disagreed that the use of polluted irrigation water can contaminate vegetables or make consumers sick. According to the seemingly unrelated regression model, farmers with no formal education and less food safety knowledge and had been planting on their current farmlands for several years were likely to produced vegetables with higher fecal coliform and Enterococcus sp. counts compared to other farmers. Vegetables cultivated by farmers who disagreed that the use of contaminated water can make consumers sick were associated with the production of vegetables with high fecal coliform and Enterococcus sp. counts. Education and improved agricultural and post-harvest handling practices should be encouraged among vegetable producers in the area to improve food safety.


2011 ◽  
Vol 27 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Alex Laini ◽  
Marco Bartoli ◽  
Simona Castaldi ◽  
Pierluigi Viaroli ◽  
Ettore Capri ◽  
...  

2012 ◽  
Vol 442-443 ◽  
pp. 15-22 ◽  
Author(s):  
I. García-Garizábal ◽  
J. Causapé ◽  
R. Abrahao

Sign in / Sign up

Export Citation Format

Share Document