Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China

2016 ◽  
Vol 540 ◽  
pp. 257-273 ◽  
Author(s):  
Ying Guo ◽  
Yanjun Shen
2019 ◽  
Vol 11 (4) ◽  
pp. 1724-1747 ◽  
Author(s):  
M. Allani ◽  
R. Mezzi ◽  
A. Zouabi ◽  
R. Béji ◽  
F. Joumade-Mansouri ◽  
...  

Abstract This study evaluates the impacts of climate change on water supply and demand of the Nebhana dam system. Future climate change scenarios were obtained from five general circulation models (GCMs) of CMIP5 under RCP 4.5 and 8.5 emission scenarios for the time periods, 2021–2040, 2041–2060 and 2061–2080. Statistical downscaling was applied using LARS-WG. The GR2M hydrological model was calibrated, validated and used as input to the WEAP model to assess future water availability. Expected crop growth cycle lengths were estimated using a growing degree days model. By means of the WEAP-MABIA method, projected crop and irrigation water requirements were estimated. Results show an average increase in annual ETo of 6.1% and a decrease in annual rainfall of 11.4%, leading to a 24% decrease in inflow. Also, crops' growing cycles will decrease from 5.4% for wheat to 31% for citrus trees. The same tendency is observed for ETc. Concerning irrigation requirement, variations are more moderated depending on RCPs and time periods, and is explained by rainfall and crop cycle duration variations. As for demand and supply, results currently show that supply does not meet the system demand. Climate change could worsen the situation unless better planning of water surface use is done.


2020 ◽  
Vol 20 (6) ◽  
pp. 55-66
Author(s):  
Sehoon Kim ◽  
Chunggil Jung ◽  
Jiwan Lee ◽  
Jinuk Kim ◽  
Seongjoon Kim

This study is to evaluate future agricultural water supply capacity in Geum river basin (9,865 km<sup>2</sup>) using SWAT and MODSIM-DSS. The MODSIM-DSS was established by dividing the basin into 14 subbasins, and the irrigation facilities of agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped within each subbasin, and networked between subbasins including municipal and industrial water supplies. The SWAT was calibrated and validated using 11 years (2005-2015) daily streamflow data of two dams (DCD and YDD) and 4 years (August 2012 to December 2015) data of three weirs (SJW, GJW, and BJW) considering water withdrawals and return flows from agricultural, municipal, and industrial water uses. The Nash−Sutcliffe efficiency (NSE) of two dam and three weirs inflows were 0.55∼0.70 and 0.57∼0.77 respectively. Through MODSIM-DSS run for 34 years from 1982 to 2015, the agricultural water shortage had occurred during the drought years of 1982, 1988, 1994, 2001 and 2015. The agricultural water shortage could be calculated as 197.8 × 10<sup>6</sup> m<sup>3</sup>, 181.9 × 10<sup>6</sup> m<sup>3</sup>, 211.5 × 10<sup>6</sup> m<sup>3</sup>, 189.2 × 10<sup>6</sup> m<sup>3</sup> and 182.0 × 10<sup>6</sup> m<sup>3</sup> respectively. The big shortages of agricultural water were shown in water resources unit map number of 3004 (Yeongdongcheon) and 3012 (Geumgang Gongju) areas exceeding 25.1 × 10<sup>6</sup> m<sup>3</sup> and 47.4 × 10<sup>6</sup> m<sup>3</sup>. From the estimation of future agricultural water requirement using RCP 8.5 INM-CM4 scenario, the 3004 and 3012 areas showed significant water shortages of 26.1 × 10<sup>6</sup> m<sup>3</sup> (104.1%) and 50.9 × 10<sup>6</sup> m<sup>3</sup> (107.4%) in 2080s (2070∼2099) compared to the present shortages. The water shortages decreased to 23.6 × 10<sup>6</sup> m<sup>3</sup> (94.0%) and 43.3 × 10<sup>6</sup> m<sup>3</sup> (91.4%) below of the present shortages by developing irrigation facilities.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1150
Author(s):  
Siqi Liang ◽  
Shouzhang Peng ◽  
Yunming Chen

As global climate change has a large effect on the carbon cycle of forests, it is very important to understand how forests in climate transition regions respond to climate change. Specifically, the LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) model was used to simulate net ecosystem productivity (NEP) and soil heterotrophic respiration (Rh) dynamics of two forest ecosystems of different origins between 1951 and 2100, to quantitatively analyze the carbon source and sink functions and potential changes in soil carbon dynamics in arid and humid regions under future climate change, simulate the dynamics of forest net primary productivity (NPP) under different climatic factors, and analyze the sensitivity of forests in arid and humid regions to temperature, precipitation, and carbon dioxide (CO2) concentration. We found that: (1) in both the historical and future periods, the average NEP of both studied forests in the humid region was larger than that in the arid region, the carbon sink function of the humid region being predicted to become stronger and the arid zone possibly becoming a carbon source; (2) between 1951 and 2100, the forest soil Rh in the arid region was lower than that in the humid region and under future climate change, forest in the humid region may have higher soil carbon loss; (3) increasing temperature had a negative effect and CO2 concentration had a positive effect on the forests in the study area, and forests in arid areas are more sensitive to precipitation change. We believe our research could be applied to help policy makers in planning sustainable forest management under future climate change.


2007 ◽  
Vol 11 (3) ◽  
pp. 1115-1126 ◽  
Author(s):  
H. J. Fowler ◽  
C. G. Kilsby ◽  
J. Stunell

Abstract. Over the last two decades, the frequency of water resource drought in the UK, coupled with the more recent pan-European drought of 2003, has increased concern over changes in climate. Using the UKCIP02 Medium-High (SRES A2) scenario for 2070–2100, this study investigates the impact of climate change on the operation of the Integrated Resource Zone (IRZ), a complex conjunctive-use water supply system in north-western England. The results indicate that the contribution of individual sources to yield may change substantially but that overall yield is reduced by only 18%. Notwithstanding this significant effect on water supply, the flexibility of the system enables it to meet modelled demand for much of the time under the future climate scenario, even without a change in system management, but at significant expense for pumping additional abstraction from lake and borehole sources. This research provides a basis for the future planning and management of the complex water resource system in the north-west of England.


Sign in / Sign up

Export Citation Format

Share Document