The importance of incorporating rain intensity profiles in rainfall simulation studies of infiltration, runoff production, soil erosion, and related landsurface processes

2021 ◽  
pp. 126834
Author(s):  
David Dunkerley
2021 ◽  
Vol 18 (3) ◽  
pp. 706-715
Author(s):  
Leila Gholami ◽  
Abdulavahed Khaledi Darvishan ◽  
Veliber Spalevic ◽  
Artemi Cerdà ◽  
Ataollah Kavian

1991 ◽  
Vol 4 (1) ◽  
pp. 79-91 ◽  
Author(s):  
D. Warrington ◽  
I. Shainberg ◽  
G.J. Levy ◽  
Y. Bar-Or

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1228 ◽  
Author(s):  
María Fernández-Raga ◽  
Julián Campo ◽  
Jesús Rodrigo-Comino ◽  
Saskia D. Keesstra

For the study of soil erosion it is important to set up the experiments well. In the experimental design one of the key factors is the choice of the measurement device. This is especially important when one part of the erosion process needs to be isolated, such as for splash erosion. Therefore, the main aim of this research is to list the general characteristics of the commonly used splash erosion devices and to discuss the performance, to be able to relate them, and make suggestions regarding their use. The devices we selected for this comparative comparison were: the splash cup, funnel, Morgan tray, Tübingen cup, tower, and the gutter. The devices were tested under the same conditions (rainfall characteristics, slope, and soil type) to assess their hydrological response under different intensities of simulated rainfall. All devices were installed on a sloping plot (10°) with sandy soil, and were exposed to 10 min. of simulated rain with intensities ranging from 60 to 172 mm/h to measure the splashed sediment, and to describe problems and differences among them. The results showed that the Tübingen cup was the best performing device to measure kinetic energy of the rain, but, because of its design, it is not possible to measure the detached splashed sediment under natural (field) conditions. On the other hand, the funnel device showed a significant relation with rain intensity because it loses little sediment to washing. In addition, the device is easy to use and cheap. Therefore, this device is highly recommended to estimated splash erosion. to the good performance measuring the actual splash erosion, because it loses little sediment by washing. The device is also cheap and easy to install and manage.


Hydrology ◽  
2016 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Jesús Rodrigo Comino ◽  
Thomas Iserloh ◽  
Xavier Morvan ◽  
Oumarou Malam Issa ◽  
Christophe Naisse ◽  
...  

2007 ◽  
Vol 378 (1-2) ◽  
pp. 161-165 ◽  
Author(s):  
María José Marques ◽  
Ramón Bienes ◽  
Luis Jiménez ◽  
Raquel Pérez-Rodríguez

2020 ◽  
Author(s):  
Nicolás Riveras ◽  
Kristina Witzgall ◽  
Victoria Rodríguez ◽  
Peter Kühn ◽  
Carsten W. Mueller ◽  
...  

<p>Soil erosion is one of the main problems in soil degradation nowadays and is widely distributed in many landscapes worldwide. Particularly water erosion is widespread and determined by rain erosivity, soil erodibility, topographic factors and the management carried out to mitigate this phenomenon. Although this process is mostly known as a consequence of human management such as agriculture or forestry, it is a process that also occurs naturally, being one of the factors that regulate the shape of the landscape.</p><p>One of the main agents that stabilize the soil surface is biota and its activity, either in the form of plants, microorganisms or as an assemblage in the form of a biological soil crust (biocrusts). However, there are limited studies about how and what extent biota drives soil-stabilizing processes. With particular view on the impact of biocrusts on soil erosion, most studies have been carried out in arid and semi-arid regions, so its influence under other climates is largely unknown.</p><p>This study focuses on the influence of biota on soil erosion in a temperature and rainfall gradient, covering four climate zones (arid, semi-arid, mediterranean and humid) with very limited human intervention. Other variables such as the origin of the geological formation, geographical longitude and glacial influence were kept constant for all study sites. The effect of vegetation (biocrusts) and its abundance, microbiology and terrain parameters are investigated using rainfall simulation experiments under controlled conditions and by a physico-chemical evaluation of the soil, surface runoff, percolation and sediment discharge, in order to determine the different environmental filtering effects that the soil develops under different climatic conditions.</p><p>It is expected that as vegetation vigor and cover increase, soil erodibility will decrease. The biocrust is the protagonist of this stabilization in conditions of low pedological development and will become secondary as edaphoclimatic conditions favor the colonization of plants.</p><p>The results of this study will help to achieve a better understanding of the role of biota in soil erosion control and will clarify its influence on soil losses under different climate and slope conditions. Analyses are currently ongoing and first results of our work will be presented at the EGU 2020.</p>


2020 ◽  
Author(s):  
Igor Bogunovic ◽  
Leon Josip Telak ◽  
Paulo Pereira

<p>Soil erosion by water is one of the most important degradation processes. Land use has important effects on soil properties, therefore it is key to identify the type of management that have more impacts and find solutions to mitigate it. In order to understand the effects of land use management on soil and soil erosion in the Istria region (Croatia), we studied the impacts of different agriculture practices (vineyard, cropland, and olive orchard) on soil properties and runoff. The simulated rainfall was carried out at 58 mm h<sup>−1</sup> in the summer of 2018 (30% soil water content) for 30 min on 0.785 m<sup>2</sup> circular plots. The results showed that bulk density was significantly higher in cropland plots than in the vineyard and olive orchard. Soil organic matter, mean weight diameter, and aggregate stability were significantly higher in olive orchard plots than in the vineyard and cropland. Runoff and sediment losses were higher in olive orchard compared to vineyard plots. Carbon, nitrogen, and phosphorus losses were highest in olive orchard plots with 3.9 kg ha<sup>-1</sup>, 405.2 g ha<sup>-1</sup> and 73.6 g ha<sup>-1</sup>, respectively, while lower values were measured in the vineyard plots, where nutrients losses were lower with 0.9 kg ha<sup>-1</sup>, 73.8 g ha<sup>-1</sup> and 6.5 g ha<sup>-1</sup>, respectively. No runoff was observed in cropland plots. Even with the highest measured values of runoff and erosion in the herbicide treated olive orchard, results indicate that both herbicide application and tillage represent a threat to the sustainability of Istrian soils. Vegetation cover on cropland reduces the runoff generation indicating the need for adoption of conservation strategies. In current management, vegetation removal should be avoided since it contributes to practice to reduce nutrient losses and increase the sustainability of the soils.</p><p> </p><p><strong>Keywords</strong>: Soil water erosion, Soil tillage, Rainfall simulation, Agriculture land management, Mediterranean</p><p> </p><p><strong>Acknowledgements</strong></p><p> </p><p>This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).</p>


2005 ◽  
Vol 17 (2) ◽  
pp. 163-180 ◽  
Author(s):  
C. O.A. Coelho ◽  
A. J.D. Ferreira ◽  
A. Laouina ◽  
A.-K. Boulet ◽  
M. Chaker ◽  
...  

The ongoing intensification of grazing as well as the replacement of traditional land management systems in the Maghreb has brought to the forefront the fundamental role of land-use in determining soil erosion hazard. This paper reports on erosion rates and soil hydrological characteristics of a variety of land uses in Morocco and Tunisia. The results were obtained through rainfall simulation experiments carried out in the field using a portable simulator, following the design of CERDÀ et al. (1997). Traditional land management systems - typically involving a combination of agriculture, animal husbandry and forestry - produced the least amounts of overland flow and the lowest soil erosion rates. Over-exploitation of these systems apparently has only minor hydrological and erosional impacts. Heavily grazed, degraded "maquis" shrublands, on the other hand, produced considerable amounts of overland flow. At the plot scale of the rainfall simulation experiments (0.24 m2), the corresponding sediment loads are rather insignificant. Nevertheless, slopes where "maquis" shrublands (which generally have very compacted soils) occur upslope from more erodible soils may present a major erosion hazard.


Author(s):  
Artemi Cerdà ◽  
Iván Franch-Pardo ◽  
Agata Novara ◽  
Srikanta Sannigrahi ◽  
Jesús Rodrigo-Comino

AbstractThe main goal of this research was to conduct a biophysical, economic, social, and perception-based approach to foresee the solutions that could be used to mitigate the soil loss problem cost-effectively in “La Ribera del Xúquer” district (Valencia Region, Spain). To achieve these goals, a farmer perception survey was carried out, and an assessment of the biophysical impact of catch crops on soil organic matter, bulk density, steady-state infiltration rate (double-ring infiltrometer) and runoff generation, and soil erosion (rainfall simulation experiments) was carried out in 2016. For the biophysical approach, two paired plots, i.e., catch crops vs. glyphosate herbicide treatment (in advance, control plot), were selected under clementine citrus production. The results show that soil organic matter increased from 1.14 to 1.63%, and bulk density decreased from 1.47 to 1.27 g cm−3 after 10 years of treatments using catch crops. They also facilitated higher infiltration rates from 16.7 to 171 mm h−1 and a delay in runoff generation from 149 to 654 s for control and catch crop plots. Both runoff rates (from 50.6 to 3.1%) and soil erosion (from 3.9 to 0.04 Mg ha−1 h−1) were reduced once the catch crops were deployed in the field. After surveying (2018–2019), farmers stated the use of catch crops as a speck of dirt and a cause of possible loss of reputation when used. Moreover, farmers (N = 73) would accept the catch crops as an effective nature-based alternative only if a subsidy of 131.17€ ha−1 would be paid. The survey results also demonstrated that the farmers' community would see catch crop more as a benefit for the planet's health and society. Few constraints, such as ageing of the farmers’ population, lack of education and negative perception for other management factors, are the critical detrimental factors for adopting catch crops as a nature-based solution to reduce soil and water losses. There is a need for an effective agrarian extension service to change the fate of the current agriculture and achieve sustainability by adopting new management strategies in contemporary agricultural practices.


Sign in / Sign up

Export Citation Format

Share Document