scholarly journals 131 Defining cellular quiescence as a multi-drug resistance mechanism in squamous cell carcinoma

2017 ◽  
Vol 137 (5) ◽  
pp. S22
Author(s):  
J. Brown ◽  
Y. Yonekubo ◽  
A. Tsirigos
2019 ◽  
Vol 51 (8) ◽  
pp. 826-833 ◽  
Author(s):  
Zhenghua Zhang ◽  
Ran Xiong ◽  
Caiwei Li ◽  
Meiqing Xu ◽  
Mingfa Guo

AbstractEsophageal squamous cell carcinoma (ESCC) is a common malignancy with poor prognosis. The drug resistance compromises the efficacy of chemotherapy for ESCC. Long non-coding RNA taurine upregulated gene 1 (TUG1) has been identified as a promoter of cancer progression and chemotherapy resistance in many malignancies. However, the exact role of TUG1 in ESCC chemotherapy resistance remains unclear. In this study, we showed that TUG1 expression in TE-1-derived cisplatin (DDP)-resistant (TE-1/DDP) cells was higher than that in TE-1 cells. Furthermore, TUG1 promoted DDP resistance in TE-1 and TE-1/DDP cells by promoting cell proliferation, suppressing cell apoptosis, and elevating protein expression of the classical multi-drug resistance-related P-gp. In contrast, TUG1 knockdown exerted an opposite effect. Mechanistically, RNA pull-down and RNA immunoprecipitation assays confirmed that TUG1 directly bound to nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein and elevated Nrf2 protein expression. Moreover, Nrf2-neutralizing antibody effectively reversed the TUG1 overexpression-mediated promotion of ESCC cell resistance to DDP. In conclusion, our findings demonstrated that TUG1 promoted ESCC cell resistance to DDP, at least in part, through upregulating Nrf2.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1166 ◽  
Author(s):  
Xin-Hui Khoo ◽  
Ian C. Paterson ◽  
Bey-Hing Goh ◽  
Wai-Leng Lee

Drug resistance remains a severe problem in most chemotherapy regimes. Recently, it has been suggested that cancer cell-derived extracellular vesicles (EVs) could mediate drug resistance. In this study, the role of EVs in mediating the response of oral squamous cell carcinoma (OSCC) cells to cisplatin was investigated. We isolated and characterized EVs from OSCC cell lines showing differential sensitivities to cisplatin. Increased EV production was observed in both de novo (H314) and adaptive (H103/cisD2) resistant lines compared to sensitive H103 cells. The protein profiles of these EVs were then analyzed. Differences in the proteome of EVs secreted by H103 and H103/cisD2 indicated that adaptation to cisplatin treatment caused significant changes in the secreted nanovesicles. Intriguingly, both resistant H103/cisD2 and H314 cells shared a highly similar EV protein profile including downregulation of the metal ion transporter, ATP1B3, in the EVs implicating altered drug delivery. ICP-MS analysis revealed that less cisplatin accumulated in the resistant cells, but higher levels were detected in their EVs. Therefore, we inhibited EV secretion from the cells using a proton pump inhibitor and observed an increased drug sensitivity in cisplatin-resistant H314 cells. This finding suggests that control of EV secretion could be a potential strategy to enhance the efficacy of cancer treatment.


Author(s):  
Wei Cui ◽  
Tingting Fang ◽  
Zhaoheng Duan ◽  
Dongfang Xiang ◽  
Yanxia Wang ◽  
...  

Platinum-based regimens have been routinely used in the clinical treatment of patients with esophageal squamous cell carcinoma (ESCC). However, administration of these drugs is frequently accompanied by drug resistance. Revealing the underlying mechanisms of the drug resistance and developing agents that enhance the sensitivity to platinum may provide new therapeutic strategies for the patients. In the present study, we found that the poor outcome of ESCC patients receiving platinum-based regimens was associated with co-expression of Shh and Sox2. The sensitivity of ESCC cell lines to cisplatin was related to their activity of Shh signaling. Manipulating of Shh expression markedly changed the sensitivity of ESCC cells to platinum. Continuous treatment with cisplatin resulted in the activation of Shh signaling and enhanced cancer stem cell-like phenotypes in ESCC cells. Dihydroartemisinin (DHA), a classic antimalarial drug, was identified as a novel inhibitor of Shh pathway. Treatment with DHA attenuated the cisplatin-induced activation of the Shh pathway in ESCC cells and synergized the inhibitory effect of cisplatin on proliferation, sphere and colony formation of ALDH-positive ESCC cells in vitro and growth of ESCC cell-derived xenograft tumors in vivo. Taken together, these results demonstrate that the Shh pathway is an important player in cisplatin-resistant ESCC and DHA acts as a promising therapeutic agent to sensitize ESCC to cisplatin treatment.


Sign in / Sign up

Export Citation Format

Share Document