Cryopreservation of human whole blood allows immunophenotyping by flow cytometry up to 30 days after cell isolation

2018 ◽  
Vol 452 ◽  
pp. 32-38 ◽  
Author(s):  
R. Madelaine Paredes ◽  
Douglas K. Tadaki ◽  
Amanda Sooter ◽  
Fabia Gamboni ◽  
Forest Sheppard
2006 ◽  
Vol 13 (6) ◽  
pp. 704-707 ◽  
Author(s):  
Marcin Moniuszko ◽  
Krzysztof Kowal ◽  
Malgorzata Rusak ◽  
Miroslawa Pietruczuk ◽  
Milena Dabrowska ◽  
...  

ABSTRACT We investigated whether the choice of anticoagulant or the application of density gradient mononuclear cell isolation may account for conflicting published data regarding the levels of the scavenger receptors' expression in healthy individuals. We demonstrate that the detection of CD163, but not CD36, differs dramatically among the methods.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3930-3930
Author(s):  
Dorthe Viuff ◽  
Marianne Kjalke ◽  
Vivian Lind ◽  
Egon Persson ◽  
Mirella Ezban

Abstract Introduction: Acidosis is associated with high mortality in trauma patients. Therefore there is a major interest in generating acidosis models in vitro and in vivo to determine the effect of acidosis on coagulation and to develop treatments. The aim of this study was to examine the effect of acidosis induction in human whole blood using HCl versus Hepes and to analyze the subsequent effect of rFVIIa (NovoSeven®). Materials and Methods: Native human whole blood was obtained from healthy volunteers (n=6) and pH was adjusted to 6.8 using 1 M HCl or 1 M Hepes (pH 6.8). Coagulation was triggered with kaolin or tissue factor (TF, Innovin, final dilution 1:42500) and measured by thrombelastography (TEG, Haemoscope®). Furthermore, the effect of rFVIIa (25nM ∼ 90 mcg/kg) was measured. The TEG parameters R (sec), angle (deg) and maximum amplitude (MA, mm) were recorded and presented as mean±SD. A shorter R and greater angle and MA values are indicative of a more robust clot formation. Statistical analysis was performed by a two-way ANOVA-model. Platelet function was analyzed by platelet aggregation using Multiplate (Dynabyte Medical). Exposure of P-selectin, negatively charged phospholipids (annexin A5 binding) and induction of the active conformation of the fibrinogen receptor GPIIb/IIIa (PAC-1 binding) on platelets after TRAP-stimulation of whole blood was analyzed using a FACS Canto flow cytometer (BD). Results: TEG, platelet aggregation and flow cytometry indicated that lowering the pH to 6.8 by HCl affected the blood significantly different than when pH was lowered by addition of Hepes. HCl-treated blood triggered with either kaolin or TF showed a significantly decreased R value (378±45 or 661±130 vs 539±98 or 888±353 in untreated controls), significantly decreased MA (52±6 or 51±9 vs 66±8 or 62±13) and decreased angle (50±7 or 36±10 vs control 57±10 or 44±19, not significant). Hepes-treated blood triggered with kaolin showed no difference in R (458±52), angle (64±4) and MA (58±9) compared to untreated controls, whereas blood triggered with TF showed significantly shortened R-value (461±91) and enhanced angle (63±5) compared to untreated controls. Hepes treatment had no effect on MA (64±12). rFVIIa significantly shortened R irrespective of the acidosis inducer or clot trigger(HCl/kaolin 283±34, HCl/TF 307±52; Hepes/kaolin 363±32, Hepes/TF 313±46). Although the other TEG parameters were also improved, the effect was only significant when blood was treated with HCl and clotting initiated with TF (angle 48±11, MA 56±10). HCl-induced acidosis abolished platelet aggregation, whereas Hepes-induced acidosis did not alter platelet aggregation compared to normal blood. Flow cytometry showed that platelets from HCl-treated blood were pre-activated as evidence by expression of P-selectin on 70% of the platelets, annexin A5 binding to 14% of the platelets and PAC-1 binding to 62% of the platelets before stimulation. TRAP-stimulation increased P-selectin expression, and PAC1 and Annexin A5 binding to platelets in HCl-treated blood. In contrast, Hepes-treatment did not pre-activate the platelets and the increase in P-selectin expression, and annexin A5 and PAC-1 binding after TRAP-stimulation was as seen for control blood. Conclusion: The method used to lower pH in human blood strongly influences the functionality of the platelets and coagulation factors independent of the final pH. It is therefore important in experimental in vitro and in vivo models to be aware of these dramatically different effects in order to draw correct conclusions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jurij Kiefer ◽  
Johannes Zeller ◽  
Balázs Bogner ◽  
Isabel A. Hörbrand ◽  
Friederike Lang ◽  
...  

Monocytes are the third most frequent type of leukocytes in humans, linking innate and adaptive immunity and are critical drivers in many inflammatory diseases. Based on the differential expression of surface antigens, three monocytic subpopulations have been suggested in humans and two in rats with varying inflammatory and phenotype characteristics. Potential intervention strategies that aim to manipulate these cells require an in-depth understanding of monocyte behavior under different conditions. However, monocytes are highly sensitive to their specific activation state and expression of surface markers, which can change during cell isolation and purification. Thus, there is an urgent need for an unbiased functional analysis of activation in monocyte subtypes, which is not affected by the isolation procedure. Here, we present a flow cytometry-based protocol for evaluating subset-specific activation and cytokine expression of circulating blood monocytes both in humans and rats using small whole blood samples (50 - 100 μL). In contrast to previously described monocyte isolation and flow cytometry visualization methods, the presented approach virtually leaves monocyte subsets in a resting state or fixes them in their current state and allows for an unbiased functional endpoint analysis without prior cell isolation. This protocol is a comprehensive tool for studying differential monocyte regulation in the inflammatory and allogeneic immune response in vitro and vivo.


2020 ◽  
Vol 216 ◽  
pp. 107940
Author(s):  
Juliana M. Ribeiro ◽  
Cristiano C. Bandeira ◽  
Bruno G. de Faria ◽  
Marina L.R. Alves ◽  
Francisco O. Vieira ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A11-A11
Author(s):  
Liping Yu ◽  
Silin Sa ◽  
Alice Wang

BackgroundAdvancements in fields of multi-omics analysis and cell-based therapies depend upon efficient cell processing tools to isolate rare cancer and immune cells from complex biologic samples as an initial step in sample preparation. Conventional technologies are limited in automation, recovery and purity. We present an integrated system based on multiple physics principles with built-in novel technologies to achieve cell purification, concentration and target cell isolation, with high recovery at an unprecedented flow rate. This platform, the Multi-physics Automated Reconfigurable Separation (MARS), combines tunable, acoustic cell processing and in-flow immuno-magnetic separation technologies, enabling automation of the entire cell sample preparation workflow for proteomics and genomics analysis.MethodsCirculating tumor cells (CTC) are present in extreme low frequency in blood stream (1–100 in billions of blood cells) thus it has been a challenge to isolate CTCs with high recovery. We have developed protocols on MARS to isolate CTCs from whole blood for multi-color flow cytometry analysis. To demonstrate the extent of enrichment of tumor cells in whole blood, PC3 cells were used for spike recovery. RBC lysed blood sample was then loaded on MARS and automatically processed through cell washing, concentration, and magnetic depletion. Enriched tumor cells were collected and analyzed by flow cytometry.ResultsResults show > 4 log enrichment of tumor cells and average recovery of spiked CTC > 85% in the clinical relative range <100 cells per ml of whole blood (R2=0.929) with a throughput of 60 ml/hr. Isolated cells were confirmed to be cancer cells with imaging analysis and single cell genomic sequencing. The protocol was also validated with other cell line cells such as A549. The purity of the cells prepared by MARS are ideal for single cell genomics platforms.ConclusionsThe fluidics of MARS is also replaceable and can be sterilized to minimize sample to sample contamination. The high molecular debris removal achieved by MARS is ideal for single cell genomics platforms, as is the first-to-market automated and integrated sample preparation and cell separation system designed to be a versatile tool for downstream cell analysis.


1999 ◽  
Vol 19 (03) ◽  
pp. 134-138
Author(s):  
Gitta Kühnel ◽  
A. C. Matzdorff

SummaryWe studied the effect of GPIIb/IIIa-inhibitors on platelet activation with flow cytometry in vitro. Citrated whole blood was incubated with increasing concentrations of three different GPIIb/IIIa-inhibitors (c7E3, DMP728, XJ757), then thrombin or ADP were added and after 1 min the sample was fixed. Samples without c7E3 but with 0.1 U/ml thrombin had a decrease in platelet count. Samples with increasing concentrations of c7E3 had a lesser or no decrease in platelet count. The two other inhibitors (DMP 725, XJ757) gave similar results. GPIIb/IIIa-inhibitors prevent aggregate formation and more single platelets remain in the blood sample. The agonist-induced decrease in platelet count correlates closely with the concentration of the GPIIb/IIIa inhibitor and receptor occupancy. This correlation may be used as a simple measure for inhibitor activity in whole blood.


Sign in / Sign up

Export Citation Format

Share Document